3.逆矩阵的性质 1)若A,B均为n阶方阵,且AB=E(或BA=E) 则B=A-1 证:设AB=E 4|B|=||=1 4≠0 A-1存在,且4-1=4-1E=A-1(4B) (4-1A4)B=EB=B 同理可证BA=E的情形3. 逆矩阵的性质 (1) 若A,B均为n阶方阵,且 A B = E (或 B A =E ), 则 B=A-1 证: |A| |B| = |E| = 1 |A| 0 A-1存在,且A-1 = A-1E = A-1 (AB) = (A-1A) B = EB = B 设 A B = E 同理可证 B A =E 的情形