正在加载图片...
·338 工程科学学报,第40卷,第3期 表64种原煤和热溶煤的高热值 (俞珠峰.洁净煤技术发展及应用.北京:化学工业出版社, Table 6 High heating values of raw coals and thermal dissolution coals 2004) B] 质量分数/% 热值/ Okuyama N,Komatsu N,Shigehisa T,et al.Hyper-coal process 煤样 to produce the ash-free coal.Fuel Process Technol,2004,85(8- 挥发分 灰分 固定碳(NMkg) 10):947 KL-RAW 32.20 10.37 57.43 25.25 Yoshida T,Li C Q,Takanohashi T,et al.Effect of extraction con- KL-TDC 49.91 0.49 50.00 25.46 dition on "HyperCoal"production (2)-Effect of polar solvents GD-RAW 14.31 9.14 76.55 29.23 under hot filtration.Fuel Process Technol,2004,86(1):61 [5] GD-TDC 29.00 0.68 70.32 29.38 Shui H F,Zhao W J,Shan C J,et al.Caking and coking proper- ties of the thermal dissolution soluble fraction of a fat coal.Fuel XB-RAW 31.81 9.87 58.33 25.51 Process Technol,2014,118:64 XB-TDC 47.02 1.26 51.72 25.61 [6]Takanohashi T,Shishido T,Saito I.Effects of hyper coal addition ZS-RAW 29.11 11.42 59.47 25.48 on coke strength and thermoplasticity of coal blends.Energy Fu- ZS-TDC 44.77 0.90 54.34 26.19 ,2008,22(3):1779 Rahman M,Samanta A,Gupta R.Production and characterization 挥发分含量增高,固定碳含量减少;热溶煤中C元 of ash-free coal from low-rank Canadian coal by solvent extraction. 素的含量高于原煤,对于低阶煤XB和ZS尤其明 Fuel Process Technol,2013,115:88 ⑧] Shui H F,Zhou Y,Li H P,et al.Thermal dissolution of Shenfu 显:KL、GD和ZS3种热溶萃取煤的H/C原子比大 coal in different solvents.Fuel,2013,108:385 于其原煤,XB热溶煤的H/C原子比小于原煤.热 9] Du J W,Fan L H,Hou C X,et al.Caking property of hypercoal 溶煤中的羰基(C一O)和芳环上的烷醚键(C一O) prepared from Ordos lignite.J China Coal Soc,2016.41 (4): 含量明显增多,在热溶过程中一些羧基(一COOH) 1025 发生解离,形成醚键进入溶剂,最后富集在热溶 (杜敬文,樊丽华,侯彩霞,等.鄂尔多斯褐煤超精煤的制备 煤中 及其黏结性能.煤炭学报,2016,41(4):1025) 0ǖ0] (2)4种热溶煤热解时,其开始反应温度相较于 Fan L H,Du J W,Liang Y H,et al.Effect of coal rank on chemical structure and thermoplasticity of hypercoal.Coal Conre 相应原煤均显著提前,对于4种热溶煤大约在400 s,2016,39(2):6 ℃,此时热溶煤的热解曲线斜率明显增加,质量损失 (樊丽华,杜敬文,梁英华,等.煤阶对无灰煤化学结构及热 速率增大,表明随着温度的升高煤解离与挥发的速 塑性的影响.煤炭转化,2016,39(2):6) 率加快.热溶煤热解时质量损失率高于原煤,其挥 1] Wang L,Fan L H,Hou C X,et al.Study on prepapation tech- 发分较高 nology of ligint-based hypercoal.Coal Conrers,2014,37 (2): 75 (3)4种热溶煤的燃烧反应性变化不尽相同,其 (王蕾,樊丽华,侯彩霞,等。以褐煤为原料的无灰煤制备工 中KL、ZS和GD热溶煤燃烧反应性增大:而XB的 艺研究.煤炭转化,2014,37(2):75) 燃烧反应性降低。这与4种热溶煤碳结构的有序化 02] Xu Y G,Zhang C,Xia J,et al.Experimental study on the com- 程度变化相一致.KL、GD和ZS3种热溶煤的ID/Ic prehensive behavior of combustion for blended coals.Asia-Pac 和A/Ac的值大于相应的原煤,其有序化程度减小, Chem Eng,2010,5(3):435 [13]Gong X Z,Guo Z C,Wang Z.Effect of K2 CO;and Fe2 O on 结构缺陷增多,燃烧性变好.而XB热溶煤的I/1c combusiton reactivity of pulverized coal by thermogravimetry anal- 和A。/A。的值小于相应的原煤,有序化程度增大,燃 ysis.J Fuel Chem Techno,2009,37(1):42 烧性变差 (公旭中,郭占成,王志.热重法研究K2C03和Fe203对煤粉 (4)4种热溶煤的HHV值,相较于原煤均显著 燃烧反应性的影响.燃料化学学报,2009,37(1):42) 提高,说明热溶过程有助于煤粉的高质化,其中低阶 04] Bai Y N,Zhang J L,Su B X,et al.Kinetics study of Fe2O3 cat- alyzing pulverized coal combustion.J Iron Steel Res,2013,25 煤ZS的增幅最大. (6):8 (白亚楠,张建良,苏步新,等.F203催化煤粉燃烧的动力 参考文献 学.钢铁研究学报,2013,25(6):8) [Fan D N.World energy:present and future.Heat Treat Met, [15]Wu J X,Xu H,Zhang J.Ramanspectroscopy of graphene.Acta 2011,36(10):119 Chim Sin,2014,72(3):301 (樊东黎.世界能源现状和未来.金属热处理,2011,36 (吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应 (10):119) 用.化学学报,2014,72(3):301) Yu Z F.Development and Application of Clean Coal Technology [16]Li M F,Zeng F G,Qi F H,et al.Raman spectroscopic charac- Beijing:Chemical Industry Press,2004 teristics of different rank coals and the relation with XRD structur-工程科学学报,第 40 卷,第 3 期 表 6 4 种原煤和热溶煤的高热值 Table 6 High heating values of raw coals and thermal dissolution coals 煤样 质量分数/% 挥发分 灰分 固定碳 热值/ ( MJ·kg - 1 ) KL--RAW 32. 20 10. 37 57. 43 25. 25 KL--TDC 49. 91 0. 49 50. 00 25. 46 GD--RAW 14. 31 9. 14 76. 55 29. 23 GD--TDC 29. 00 0. 68 70. 32 29. 38 XB--RAW 31. 81 9. 87 58. 33 25. 51 XB--TDC 47. 02 1. 26 51. 72 25. 61 ZS--RAW 29. 11 11. 42 59. 47 25. 48 ZS--TDC 44. 77 0. 90 54. 34 26. 19 挥发分含量增高,固定碳含量减少; 热溶煤中 C 元 素的含量高于原煤,对于低阶煤 XB 和 ZS 尤其明 显; KL、GD 和 ZS 3 种热溶萃取煤的 H /C 原子比大 于其原煤,XB 热溶煤的 H /C 原子比小于原煤. 热 溶煤中的羰基( C O  ) 和芳环上的烷醚键( C—O) 含量明显增多,在热溶过程中一些羧基( —COOH) 发生 解 离,形成醚键进入溶剂,最后富集在热溶 煤中. ( 2) 4 种热溶煤热解时,其开始反应温度相较于 相应原煤均显著提前,对于 4 种热溶煤大约在 400 ℃,此时热溶煤的热解曲线斜率明显增加,质量损失 速率增大,表明随着温度的升高煤解离与挥发的速 率加快. 热溶煤热解时质量损失率高于原煤,其挥 发分较高. ( 3) 4 种热溶煤的燃烧反应性变化不尽相同,其 中 KL、ZS 和 GD 热溶煤燃烧反应性增大; 而 XB 的 燃烧反应性降低. 这与 4 种热溶煤碳结构的有序化 程度变化相一致. KL、GD 和 ZS 3 种热溶煤的 ID /IG 和 AD /AG的值大于相应的原煤,其有序化程度减小, 结构缺陷增多,燃烧性变好. 而 XB 热溶煤的 ID /IG 和 AD /AG的值小于相应的原煤,有序化程度增大,燃 烧性变差. ( 4) 4 种热溶煤的 HHV 值,相较于原煤均显著 提高,说明热溶过程有助于煤粉的高质化,其中低阶 煤 ZS 的增幅最大. 参 考 文 献 [1] Fan D N. World energy: present and future. Heat Treat Met, 2011,36( 10) : 119 ( 樊东黎. 世 界 能 源 现 状 和 未 来. 金 属 热 处 理,2011,36 ( 10) : 119) [2] Yu Z F. Development and Application of Clean Coal Technology. Beijing: Chemical Industry Press,2004 ( 俞珠峰. 洁净煤技术发展及应用. 北京: 化学工业出版社, 2004) [3] Okuyama N,Komatsu N,Shigehisa T,et al. Hyper-coal process to produce the ash-free coal. Fuel Process Technol,2004,85( 8- 10) : 947 [4] Yoshida T,Li C Q,Takanohashi T,et al. Effect of extraction con￾dition on " HyperCoal" production ( 2) ———Effect of polar solvents under hot filtration. Fuel Process Technol,2004,86( 1) : 61 [5] Shui H F,Zhao W J,Shan C J,et al. Caking and coking proper￾ties of the thermal dissolution soluble fraction of a fat coal. Fuel Process Technol,2014,118: 64 [6] Takanohashi T,Shishido T,Saito I. Effects of hyper coal addition on coke strength and thermoplasticity of coal blends. Energy Fu￾els,2008,22( 3) : 1779 [7] Rahman M,Samanta A,Gupta R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction. Fuel Process Technol,2013,115: 88 [8] Shui H F,Zhou Y,Li H P,et al. Thermal dissolution of Shenfu coal in different solvents. Fuel,2013,108: 385 [9] Du J W,Fan L H,Hou C X,et al. Caking property of hypercoal prepared from Ordos lignite. J China Coal Soc,2016,41 ( 4) : 1025 ( 杜敬文,樊丽华,侯彩霞,等. 鄂尔多斯褐煤超精煤的制备 及其黏结性能. 煤炭学报,2016,41( 4) : 1025) [10] Fan L H,Du J W,Liang Y H,et al. Effect of coal rank on chemical structure and thermoplasticity of hypercoal. Coal Conve￾rs,2016,39( 2) : 6 ( 樊丽华,杜敬文,梁英华,等. 煤阶对无灰煤化学结构及热 塑性的影响. 煤炭转化,2016,39( 2) : 6) [11] Wang L,Fan L H,Hou C X,et al. Study on prepapation tech￾nology of ligint-based hypercoal. Coal Convers,2014,37 ( 2 ) : 75 ( 王蕾,樊丽华,侯彩霞,等. 以褐煤为原料的无灰煤制备工 艺研究. 煤炭转化,2014,37( 2) : 75) [12] Xu Y G,Zhang C,Xia J,et al. Experimental study on the com￾prehensive behavior of combustion for blended coals. Asia-Pac J Chem Eng,2010,5( 3) : 435 [13] Gong X Z,Guo Z C,Wang Z. Effect of K2 CO3 and Fe2 O3 on combusiton reactivity of pulverized coal by thermogravimetry anal￾ysis. J Fuel Chem Techno,2009,37( 1) : 42 ( 公旭中,郭占成,王志. 热重法研究 K2CO3和 Fe2O3对煤粉 燃烧反应性的影响. 燃料化学学报,2009,37( 1) : 42) [14] Bai Y N,Zhang J L,Su B X,et al. Kinetics study of Fe2O3 cat￾alyzing pulverized coal combustion. J Iron Steel Res,2013,25 ( 6) : 8 ( 白亚楠,张建良,苏步新,等. Fe2 O3 催化煤粉燃烧的动力 学. 钢铁研究学报,2013,25( 6) : 8) [15] Wu J X,Xu H,Zhang J. Ramanspectroscopy of graphene. Acta Chim Sin,2014,72( 3) : 301 ( 吴娟霞,徐华,张锦. 拉曼光谱在石墨烯结构表征中的应 用. 化学学报,2014,72( 3) : 301) [16] Li M F,Zeng F G,Qi F H,et al. Raman spectroscopic charac￾teristics of different rank coals and the relation with XRD structur- · 833 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有