正在加载图片...
1 中例1求im( ∴十 n→∞√n2+1√n2+2 2) n+n n n 解 < 十∴ < n2+n√n2+1 √n2+n√n2+1 1 又lm =i n→√n2+nx n lim =lim =1,由夹逼定理得 1+ n nn2+1√n2+2 m 十 + )=1 n+n 王页下例1 ). 1 2 1 1 1 lim( 2 2 2 n n n n + n + + + + → + 求  解 , 1 1 1 1 2 2 2 2 +  + + + +  + n n n n n n n n   n n n n n n 1 1 1 lim 2 lim + = → + → 又 = 1, 2 2 1 1 1 lim 1 lim n n n n n + = → + → = 1, 由夹逼定理得 ) 1. 1 2 1 1 1 lim( 2 2 2 = + + + + + n→ n + n n n 
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有