苗希望等:典型铁合金渣的资源化综合利用研究现状与发展趋势 669. 表3典型铁合金渣用于混凝土的部分研究成果 Table 3 Some results of research on some ferroalloy slags used in concrete Types Function Research Results Reference The authors mixed silicon manganese slag,limestone and cement grinding aids to produce composite micropowder,and found that the fluidity of the concrete prepared by replacing the Silicon-manganese Admixture cement with 30%fine powder was comparable to that of the whole cement,besides its Lv et al.2 slag compressive strength was far higher than that of the concrete prepared with 30%pure silicon- manganese slag. The author replaced part of the cement with electric furnace nickel-iron slag to prepare concrete materials with excellent performance,whose strength could meet that of full cement Nickel-iron slag Admixture concrete.Besides,the composition of raw materials was reduced by 15 US dollars,and the Kim et al.t351 CO,emission was reduced by 4%-24%. In this paper,the durability of ferronickel slag as concrete fine aggregate was studied.The Nickel-iron slag Fine aggregate results showed that when 27%nickel-iron slag replaced sand,the corrosion resistance of Liu et al.4 concrete to sulfate increased,but it had no significant effect on chloride ion corrosion. The concrete products was prepared by cement and partial granular high-carbon chrome-iron slag which was used as fine aggregate instead of a part of natural river sand.When the amount High-carbonchrome- iron slag Fine aggregate of slag was 10%the strength indicators of concrete products were equivalent to those of pure Dash et a natural sand-based concrete.Toxic leaching experiments showed that the leaching concentration of chromium was far less than the standard concentration threshold. AlQ (4Si)(n HO SiQ(2AI) Al,O,2SiO,Precursor HO Silicate micelle OH Na" Na' OH -0-Si-0-4-oH0 Polycondensation Si-O Na' 如O ■ Na HO -0-Si-0- Na Na'A OH OR HO nH,O Silicate micelle Ho Na ANa' OH SiQ (3AI) H.O SiQ.(IAI) 图3地质聚合物缩聚反应机理叫 Fig.3 Forming mechanism of geopolymers 保温材料等 且,相对于纯水泥基混凝土制品,该混凝土制品的 Nath与Kumar)揭示了硅锰渣和粉煤灰常温 外观长度仅降低0.1%.这为镍铁渣制备地质聚合 下用于碱激发的地质聚合物的潜在可能性.随着 物混凝土提供可能性. 硅锰渣的增加,CaO和玻璃相含量增加,缩短诱导 Nath为了解决粉煤灰在常温下反应活性低 期,促进反应,水化热增加.聚合物主要的水化产 的问题,将其和铬铁合金渣混合制备了地质聚合物 物为N-(C)-A-S-H和(N,C)-A-S-H(N为Na2O, 其中主要的反应产物是C,M-A-S-H和N-A-S-H; C为CaO,A为AlO3,S为SiO2,H为H,O);由于提 前两者是铬铁渣碱激发得到的,后者是粉煤灰碱 高了混合料的反应性和富钙凝胶的形成,聚合物 激发得到的.仅有铬铁渣的聚合物,其28d抗压强 的抗压强度随夹渣量的增加而提高.当硅锰渣的 度最大约35MPa,随着粉煤灰加入,其抗压强度降 掺入质量分数为80%时,地质聚合物的28d抗压 低.Karakoc等研究了偏硅酸钠溶液在不同养护 强度超过了35MPa. 条件下碱用量和硅模量对铬铁渣地质聚合物的影 Karakoc等B用中低碳镍铁渣和模数为1.35 响.当Na0质量分数为0.7%,硅模数为0.70时, 的偏硅酸钠溶液制备了地质聚合物胶凝材料,并 该地质聚合物可以获得28d抗压强度最大值.作 结合河砂制备了混凝土制品,研究了该混凝土制 者又将铬铁渣、砂子和碱激发剂混合后制备了地 品的抗硫酸盐性能.经过180d的浸泡之后,随着 质聚合物砂浆,发现当其质量比为1:2:03时, MgSO4溶液质量分数从0增至7%,该混凝土制品 在实验室温度养护条件下,得到的砂浆的抗压强 的抗压强度从31.23降至19.17MPa,纯水泥基混 度达到最大值:同时,浆体样品的水化热要低于普 凝土制品的抗压强度从28.37降至19.59MPa:而 通硅酸盐水泥的水化热保温材料[41] 等. Nath 与 Kumar[43] 揭示了硅锰渣和粉煤灰常温 下用于碱激发的地质聚合物的潜在可能性. 随着 硅锰渣的增加,CaO 和玻璃相含量增加,缩短诱导 期,促进反应,水化热增加. 聚合物主要的水化产 物为 N‒(C)‒A‒S‒H 和(N,C)‒A‒S‒H(N 为 Na2O, C 为 CaO, A 为 Al2O3 , S 为 SiO2 , H 为 H2O);由于提 高了混合料的反应性和富钙凝胶的形成,聚合物 的抗压强度随夹渣量的增加而提高. 当硅锰渣的 掺入质量分数为 80% 时,地质聚合物的 28 d 抗压 强度超过了 35 MPa. Karakoc 等[36] 用中低碳镍铁渣和模数为 1.35 的偏硅酸钠溶液制备了地质聚合物胶凝材料,并 结合河砂制备了混凝土制品,研究了该混凝土制 品的抗硫酸盐性能. 经过 180 d 的浸泡之后,随着 MgSO4 溶液质量分数从 0 增至 7%,该混凝土制品 的抗压强度从 31.23 降至 19.17 MPa,纯水泥基混 凝土制品的抗压强度从 28.37 降至 19.59 MPa;而 且,相对于纯水泥基混凝土制品,该混凝土制品的 外观长度仅降低 0.1%. 这为镍铁渣制备地质聚合 物混凝土提供可能性. Nath[44] 为了解决粉煤灰在常温下反应活性低 的问题,将其和铬铁合金渣混合制备了地质聚合物. 其中主要的反应产物是 C,M‒A‒S‒H 和 N‒A‒S‒H; 前两者是铬铁渣碱激发得到的,后者是粉煤灰碱 激发得到的. 仅有铬铁渣的聚合物,其 28 d 抗压强 度最大约 35 MPa,随着粉煤灰加入,其抗压强度降 低. Karakoç等[45] 研究了偏硅酸钠溶液在不同养护 条件下碱用量和硅模量对铬铁渣地质聚合物的影 响. 当 Na2O 质量分数为 0.7%,硅模数为 0.70 时 , 该地质聚合物可以获得 28 d 抗压强度最大值. 作 者又将铬铁渣、砂子和碱激发剂混合后制备了地 质聚合物砂浆,发现当其质量比为 1∶2∶0.3 时 , 在实验室温度养护条件下,得到的砂浆的抗压强 度达到最大值;同时,浆体样品的水化热要低于普 通硅酸盐水泥的水化热. 表 3 典型铁合金渣用于混凝土的部分研究成果 Table 3 Some results of research on some ferroalloy slags used in concrete Types Function Research Results Reference Silicon‒manganese slag Admixture The authors mixed silicon manganese slag, limestone and cement grinding aids to produce composite micropowder, and found that the fluidity of the concrete prepared by replacing the cement with 30% fine powder was comparable to that of the whole cement, besides its compressive strength was far higher than that of the concrete prepared with 30% pure siliconmanganese slag. Lv et al.[32] Nickel‒iron slag Admixture The author replaced part of the cement with electric furnace nickel‒iron slag to prepare concrete materials with excellent performance, whose strength could meet that of full cement concrete. Besides, the composition of raw materials was reduced by 15 US dollars, and the CO2 emission was reduced by 4%‒24%. Kim et al.[33] Nickel‒iron slag Fine aggregate In this paper, the durability of ferronickel slag as concrete fine aggregate was studied. The results showed that when 27% nickel‒iron slag replaced sand, the corrosion resistance of concrete to sulfate increased, but it had no significant effect on chloride ion corrosion. Liu et al.[34] High‒carbonchrome‒ iron slag Fine aggregate The concrete products was prepared by cement and partial granular high‒carbon chrome‒iron slag which was used as fine aggregate instead of a part of natural river sand. When the amount of slag was 10%, the strength indicators of concrete products were equivalent to those of pure natural sand-based concrete. Toxic leaching experiments showed that the leaching concentration of chromium was far less than the standard concentration threshold. Dash et al.[35] OH OH OH Silicate micelle Silicate micelle Polycondensation OH OH OH OH Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ OHHO HO HO HO HO O O O Si O O Al O Al2O3 ·2SiO2 Precursor SiQ4 (3Al) SiQ4 (1Al) n H2O AlQ4 (4Si) SiQ4 n H (2Al) 2O Si O O O O O Si Si Si O Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Si Si Si Si Si Si Si Si Si Si O O O O O O O O O O O O O O O O O O O O Si Al Al Al Al Al Al Al Al Al Al Al Si Al OH n H2O 图 3 地质聚合物缩聚反应机理[42] Fig.3 Forming mechanism of geopolymers[42] 苗希望等: 典型铁合金渣的资源化综合利用研究现状与发展趋势 · 669 ·