Shock: Damage Boundary The damage boundary theory is used to determine which shock inputs will cause damage to a product and which will not. - Two parts of a shock can cause damage: 1. the acceleration level A 2. the velocity change ∆V (the area under the acceleration-time history of the shock, thought as the energy contained in a shock) - The critical velocity change(∆Vc): a minimum velocity change which must be achieved before damage to the product can occur. 1. Below ∆Vc, no damage occurs regardless of the input A 2. Exceeding ∆Vc, does not necessarily imply that damage results. a. If ∆V occurs in a manner which administers acceptable doses of acceleration to the product, the velocity change can be very large without causing damage. b. If ∆Vc and Ac are both exceeded, damage occurs. Figure 14.1: Typical damage boundary curveShock: Damage Boundary The damage boundary theory is used to determine which shock inputs will cause damage to a product and which will not. - Two parts of a shock can cause damage: 1. the acceleration level A 2. the velocity change ∆V (the area under the acceleration-time history of the shock, thought as the energy contained in a shock) - The critical velocity change(∆Vc): a minimum velocity change which must be achieved before damage to the product can occur. 1. Below ∆Vc, no damage occurs regardless of the input A 2. Exceeding ∆Vc, does not necessarily imply that damage results. a. If ∆V occurs in a manner which administers acceptable doses of acceleration to the product, the velocity change can be very large without causing damage. b. If ∆Vc and Ac are both exceeded, damage occurs. Figure 14.1: Typical damage boundary curve