正在加载图片...
.1734 工程科学学报,第43卷,第12期 stainless steel slag by modification.J Anhui Univ Technol (Nat [44]James B R.Peer reviewed:The challenge of remediating Sc,2012,29(1):12 chromium-contaminated soil.Eniron Sci Technol,1996,30(6): (张文超,武杏荣,王伟,等.含铬不锈钢渣的改性与铬的富集 248A 安徽工业大学学报(自然科学版),2012,29(1):12) [45]Bartlett R J.Chromium cycling in soils and water:Links,gaps, [30]Gao Z Y,Li J G,Liu B,et al.Mineralogical composition of EAF and methods.Environ Heal Perspect,1991,92:17 slag and its short-term leaching characteristics.Ind Saf Environ [46]James B R.Remediation-by-reduction strategies for chromate- Pot,2017,43(11):80 contaminated soils.Environ Geochem HIth,2001,23(3):175 (高志远,李俊国,刘宝,等.EAF渣矿相组成及其短期淋溶特 [47] Apte A D,Verma S,Tare V,et al.Oxidation of Cr(IIl)in tannery 性.工业安全与环保,2017,43(11):80) sludge to Cr(VI):Field observations and theoretical assessment. [31]Peng B,Peng J.Physical and chemical characteristics of dust Hazard Mater,.2005,121(1-3):215 from electric arc furnace stainless steelmaking and mechanism of [48]Arnfalk P,Wasay S A,Tokunaga S.A comparative study of Cd, its formation.J North China Uniy Technol,2003,15(1):34 Cr(II),Cr(VI),Hg,and Pb uptake by minerals and soil materials (彭兵,彭及.不锈钢电弧炉粉尘的物理化学特性及形成机理 Water Air Soil Pollut,1996,87(1-4):131 探讨.北方工业大学学报,2003,15(1):34) [49]Eary L E,Rai D.Chromate reduction by subsurface soils under [32]Wei F R,Zhang Y L,Wei W J,et al.Chemical composition of acidic conditions.Soil Sci Soc Am J,1991,55(3):676 dust from stainless steel smelting and existing forms of Cr and [50]Dhal B,Thatoi H N,Das NN,et al.Chemical and microbial Ni.Chin J Process Eng,2011,11(5):786 remediation of hexavalent chromium from contaminated soil and (魏芬绒,张延玲,魏文洁,等.不锈钢粉尘化学组成及其C、 mining/metallurgical solid waste:A review.J Hazard Mater. Ni存在形态.过程工程学报,2011,11(5):786) 2013,250-251:272 [33]Yang CC,Pan J,Zhu D Q,et al.Pyrometallurgical recycling of [51]Chaurand P,Rose J,Proux O,et al.Environmental impact of stainless steel pickling sludge:A review.J Iron Steel Res Int, steel slag reused as aggregates in road manufacturing:Molecular 2019,26(6):547 mechanisms of chromium and vanadium release.A/P Conf Proc, [34]Liu P J,Liu Z G,Chu M S,et al.Green and efficient utilization 2007,882(1):199 of stainless steel dust by direct reduction and self-pulverization.J [52]De Windt L,Chaurand P,Rose J.Kinetics of steel slag leaching: Hazard Mater,.2021,413:125403 Batch tests and modeling.Waste Manag,2011,31(2):225 [35] Albertsson G J,Engstrom F,Teng L D.Effect of the heat [53]Liao C Z,Tang YY,Liu C S,et al.Double-barrier mechanism treatment on the chromium partition in Cr-containing industrial for chromium immobilization:A quantitative study of and synthetic slags.Steel Res Int,2014,85(10):1418 crystallization and leachability.J Hazard Mater,2016,311:246 [36]Kriskova L,Pontikes Y,Pandelaers L,et al.Effect of high [54]Cao L H,Liu C J,Zhao Q,et al.Analysis on the stability of cooling rates on the mineralogy and hydraulic properties of chromium in mineral phases in stainless steel slag.Metall Res stainless steel slags.Metall Mater Trans B,2013,44(5):1173 Technol,.2017,115(1)上114 [37]Li W L,Xue XX.Effect of cooling regime on phase [55] Garcia-Ramos E,Romero-Serrano A,Zeifert B,et al. transformation and chromium enrichment in stainless-steel slag Immobilization of chromium in slags using Mgo and Al2O3 Ironmak Steelmak,2019,46(7):642 Steel Res Int,200879(5):332 [38] Albertsson G.Teng L D,Bjorkman B,et al.Effect of low oxygen [56]Cao L H,Liu C J,Zhao Q,et al.Effect of Al,O:modification on partial pressure on the chromium partition in CaO-MgO-SiO enrichment and stabilization of chromium in stainless steel slag. Cr2O-Al2O;synthetic slag at elevated temperatures.Steel Res Iron Steel Res Int,2017,24(3):258 mL,2013,84(7):670 [57]Cao L H,Liu C J,Zhao Q,et al.Growth behavior of spinel in [39]Li J L,Zhu H Y,Xue Z L.Investigation on the effect of cooling stainless steel slag during cooling process.J Iron Steel Res Int, condition on chromium elution from stainless steel slag.Adv 2018,25(11):1131 Ma1 er Res,2014,968:101 [58] Brime C,Eberl DD.Growth mechanisms of low-grade illites [401 Yang Z H,Lin Q,Lu S C,et al.Effect of CaO/SiO,ratio on the based on the shapes of crystal thickness distributions.Sclwei preparation and crystallization of glass-ceramics from copper Mineral Petrogr Mitt,2002,82:203 slag.Ceram Int,2014,40(5):7297 [59]Li J L,Xu A J,He D F,et al.Effect of Feo on the formation of [41]Albertsson G J,Teng L D,Engstrom F,et al.Effect of the heat spinel phases and chromium distribution in the CaO-SiO,-MgO- treatment on the chromium partition in CaO-MgO-SiO,-Cr2O; AlO-Cr2O system.IntJMiner Metall Mater,2013,20(3):253 synthetic slags.Metall Mater Trans B,2013,44(6):1586 [60] Bai Z T,Qiu G B,Peng B,et al.Synthesis and characterization of [42]Ma J,Fu G Q,Li W,et al.Influence of TiO,on the melting glass-ceramics prepared from high-carbon ferrochromium slag property and viscosity of Cr-containing high-Ti melting slag.Int RSC Ad,2016,6(58):52715 JMiner Metall Mater,2020,27(3):310 [61]Zeng Q,Li J L,Mou QQ,et al.Effect of Feo on spinel [43]Zhao X,Fourie A,Qi CC.Mechanics and safety issues in tailing- crystallization and chromium stability in stainless steel-making based backfill:A review.Int J Miner Metall Mater,2020,27(9) slag.J0M,2019,71(7):2331 1165 [62]Zhao M Z,Cao J W,Wang Z,et al.Insight into the dual effect ofstainless  steel  slag  by  modification. J Anhui Univ Technol (Nat Sci), 2012, 29(1): 12 (张文超, 武杏荣, 王伟, 等. 含铬不锈钢渣的改性与铬的富集. 安徽工业大学学报(自然科学版), 2012, 29(1):12) Gao Z Y, Li J G, Liu B, et al. Mineralogical composition of EAF slag  and  its  short-term  leaching  characteristics. Ind Saf Environ Prot, 2017, 43(11): 80 (高志远, 李俊国, 刘宝, 等. EAF渣矿相组成及其短期淋溶特 性. 工业安全与环保, 2017, 43(11):80) [30] Peng  B,  Peng  J.  Physical  and  chemical  characteristics  of  dust from electric arc furnace stainless steelmaking and mechanism of its formation. J North China Univ Technol, 2003, 15(1): 34 (彭兵, 彭及. 不锈钢电弧炉粉尘的物理化学特性及形成机理 探讨. 北方工业大学学报, 2003, 15(1):34) [31] Wei F R, Zhang Y L, Wei W J, et al. Chemical composition of dust  from  stainless  steel  smelting  and  existing  forms  of  Cr  and Ni. Chin J Process Eng, 2011, 11(5): 786 (魏芬绒, 张延玲, 魏文洁, 等. 不锈钢粉尘化学组成及其Cr、 Ni存在形态. 过程工程学报, 2011, 11(5):786) [32] Yang C C, Pan J, Zhu D Q, et al. Pyrometallurgical recycling of stainless  steel  pickling  sludge:  A  review. J Iron Steel Res Int, 2019, 26(6): 547 [33] Liu P J, Liu Z G, Chu M S, et al. Green and efficient utilization of stainless steel dust by direct reduction and self-pulverization. J Hazard Mater, 2021, 413: 125403 [34] Albertsson  G  J,  Engström  F,  Teng  L  D.  Effect  of  the  heat treatment  on  the  chromium  partition  in  Cr-containing  industrial and synthetic slags. Steel Res Int, 2014, 85(10): 1418 [35] Kriskova  L,  Pontikes  Y,  Pandelaers  L,  et  al.  Effect  of  high cooling  rates  on  the  mineralogy  and  hydraulic  properties  of stainless steel slags. Metall Mater Trans B, 2013, 44(5): 1173 [36] Li  W  L,  Xue  X  X.  Effect  of  cooling  regime  on  phase transformation  and  chromium  enrichment  in  stainless-steel  slag. Ironmak Steelmak, 2019, 46(7): 642 [37] Albertsson G, Teng L D, Björkman B, et al. Effect of low oxygen partial pressure on the chromium partition in CaO ‒MgO ‒SiO2‒ Cr2O3‒Al2O3 synthetic  slag  at  elevated  temperatures. Steel Res Int, 2013, 84(7): 670 [38] Li J L, Zhu H Y, Xue Z L. Investigation on the effect of cooling condition  on  chromium  elution  from  stainless  steel  slag. Adv Mater Res, 2014, 968: 101 [39] Yang Z H, Lin Q, Lu S C, et al. Effect of CaO/SiO2 ratio on the preparation  and  crystallization  of  glass-ceramics  from  copper slag. Ceram Int, 2014, 40(5): 7297 [40] Albertsson G J, Teng L D, Engström F, et al. Effect of the heat treatment on the chromium partition in CaO ‒MgO ‒SiO2‒Cr2O3 synthetic slags. Metall Mater Trans B, 2013, 44(6): 1586 [41] Ma  J,  Fu  G  Q,  Li  W,  et  al.  Influence  of  TiO2 on  the  melting property and viscosity of Cr-containing high-Ti melting slag. Int J Miner Metall Mater, 2020, 27(3): 310 [42] Zhao X, Fourie A, Qi C C. Mechanics and safety issues in tailing￾based backfill: A review. Int J Miner Metall Mater, 2020, 27(9): 1165 [43] James  B  R.  Peer  reviewed:  The  challenge  of  remediating chromium-contaminated soil. Environ Sci Technol, 1996, 30(6): 248A [44] Bartlett R J. Chromium cycling in soils and water: Links, gaps, and methods. Environ Heal Perspect, 1991, 92: 17 [45] James  B  R.  Remediation-by-reduction  strategies  for  chromate￾contaminated soils. Environ Geochem Hlth, 2001, 23(3): 175 [46] Apte A D, Verma S, Tare V, et al. Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. J Hazard Mater, 2005, 121(1-3): 215 [47] Arnfalk P, Wasay S A, Tokunaga S. A comparative study of Cd, Cr(III), Cr(VI), Hg, and Pb uptake by minerals and soil materials. Water Air Soil Pollut, 1996, 87(1-4): 131 [48] Eary L E, Rai D. Chromate reduction by subsurface soils under acidic conditions. Soil Sci Soc Am J, 1991, 55(3): 676 [49] Dhal  B,  Thatoi  H  N,  Das  N  N,  et  al.  Chemical  and  microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical  solid  waste:  A  review. J Hazard Mater, 2013, 250-251: 272 [50] Chaurand  P,  Rose  J,  Proux  O,  et  al.  Environmental  impact  of steel slag reused as aggregates in road manufacturing: Molecular mechanisms of chromium and vanadium release. AIP Conf Proc, 2007, 882(1): 199 [51] De Windt L, Chaurand P, Rose J. Kinetics of steel slag leaching: Batch tests and modeling. Waste Manag, 2011, 31(2): 225 [52] Liao C Z, Tang Y Y, Liu C S, et al. Double-barrier mechanism for  chromium  immobilization:  A  quantitative  study  of crystallization and leachability. J Hazard Mater, 2016, 311: 246 [53] Cao  L  H,  Liu  C  J,  Zhao  Q,  et  al.  Analysis  on  the  stability  of chromium  in  mineral  phases  in  stainless  steel  slag. Metall Res Technol, 2017, 115(1): 114 [54] García-Ramos  E,  Romero-Serrano  A,  Zeifert  B,  et  al. Immobilization  of  chromium  in  slags  using  MgO  and  Al2O3 . Steel Res Int, 2008, 79(5): 332 [55] Cao L H, Liu C J, Zhao Q, et al. Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag. J Iron Steel Res Int, 2017, 24(3): 258 [56] Cao  L  H,  Liu  C  J,  Zhao  Q,  et  al.  Growth  behavior  of  spinel  in stainless  steel  slag  during  cooling  process. J Iron Steel Res Int, 2018, 25(11): 1131 [57] Brime  C,  Eberl  D  D.  Growth  mechanisms  of  low-grade  illites based  on  the  shapes  of  crystal  thickness  distributions. Schweiz Mineral Petrogr Mitt, 2002, 82: 203 [58] Li J L, Xu A J, He D F, et al. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO‒SiO2‒MgO‒ Al2O3‒Cr2O3 system. Int J Miner Metall Mater, 2013, 20(3): 253 [59] Bai Z T, Qiu G B, Peng B, et al. Synthesis and characterization of glass-ceramics  prepared  from  high-carbon  ferrochromium  slag. RSC Adv, 2016, 6(58): 52715 [60] Zeng  Q,  Li  J  L,  Mou  Q  Q,  et  al.  Effect  of  FeO  on  spinel crystallization  and  chromium  stability  in  stainless  steel-making slag. JOM, 2019, 71(7): 2331 [61] [62] Zhao M Z, Cao J W, Wang Z, et al. Insight into the dual effect of · 1734 · 工程科学学报,第 43 卷,第 12 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有