邱博等:宏观颗粒增强铁基复合材料的制备与性能 ·977· b 1004t 100um 图13复合材料及基体材料在高载下对磨环的磨损形貌.(a)复合材料:(b)基体材料 Fig.13 Friction ring wear morphology of composites and matrix material under high load:(a)composites;(b)metal matrix 过这些地方传递到对磨双方.由于实际导热面积远 (郑开宏,赵散梅,王娟,等.颗粒增强高铬铸铁基复合材料 小于理论导热面积,因此可以产生很高的局部闪 的制备、组织与性能.铸造.2012,61(2):165) 温[2],造成摩擦面附近材料表面的软化,从而表现 [5]Li Y F,Gao Y M,Wang B H,et al.Interface and wear charac- teristics of high-Cr cast iron matrix composite reinforced with ce- 为对磨环表面有黏着物的出现. mented carbide particles.Mater Sci Eng Poider Metall,2009,14 3结论 (5):331 (李烨飞,高义民,王必辉,等.颗粒增强高铬铸铁基复合材 (1)采用“随流混合+高压复合”方法成功制备 料界面及摩擦学特性.粉末治金材料科学与工程,2009,14 了复合效果良好的ZTA/KmTBCr226抗磨复合材料, (5):331) [6]Francois H.Composite Wear Component:USA Patent, 其内部颗粒分布均匀,颗粒与基体之间结合紧密,金 6399176B1.2002-06-04 属液在高压作用下可以浸入陶瓷表面的微小间隙 [7]Chen Z H,Xiong H,Sun G X,et al.The casting infiltration ce- 内,形成犬牙交错的微机械啮合界面. ramic technology preliminary of wear resistant cast.Cem Guide (2)与单一KmTBCr226相比,ZTA/KmTBCr226复 New Epoch,2015(2):10 合材料的冲击韧性显著下降,冲击断口形貌显示材 (陈忠华,熊晖,孙桂祥,等.耐磨铸件铸渗陶瓷技术的初探 新世纪水泥导报,2015(2):10) 料的断裂主要是沿ZTA陶瓷颗粒内部发生的,没有 [8]Kish 0,Froumin N,Aizenshtein M,et al.Interfacial interaction 出现陶瓷颗粒整体脱落或者拔出的现象,说明复合 and wetting in the Ta2Os/Cu-Al system.Mater Eng Perform. 材料的界面结合强度较高. 2014,23(5):1551 (3)在干摩擦实验条件下,采用“随流混合+高 [9]Han M Y,Chen W P,Yang S F.Preparation of stainless steel/ 压复合”方法制备的ZTA/KmTBCr26复合材料的抗 Al,O ceramic composites by Ni-induced pressureless infiltration. 磨性与单一KmTBCr26相比显著提高,当载荷从 Spee Cast Nonferrous Alloys.2010,30(8):753 (韩孟岩,陈维平,杨少锋.N诱导无压浸渗法制备不锈钢/ 300N增加到900N时,复合材料的相对抗磨性从 AL203陶瓷复合材料.特种铸造及有色合金,2010,30(8): 1.8倍提高到3.3倍 753) [10]Liu A G,Guo M H,Zhao M H,et al.Microstructure and wear 参考文献 resistance of large WC particles reinforced surface metal matrix [1]Wiengmoon A,Chairuangsri T,Brown A,et al.Microstructural composites produced by plasma melt injection.Suf Coat Techn- and crystallographical study of carbides in 30wt.%Cr cast irons ol,2007,201(18):7978 Acta Mater,2005,53(15):4143 [11]Xu C,Jia CC,Guo H,et al.Effect of electroless nickel plating [2]Miracle D B.Metal matrix composites-from science to techno- process on the properties of the plating layer on diamond/Cu com logical significance.Compos Sci Technol,2005,65(15-16): posite materials.J Unir Sci Technol Beijing,2013,35(11): 2526 1500 [3]Akhtar F.Microstructure evolution and wear properties of in situ (徐超,贾成厂,郭宏,等.化学镀镍工艺对金刚石/铜复合 synthesized TiB,and TiC reinforced steel matrix composites.JAl- 材料表面镀层性能的影响.北京科技大学学报.2013,35 loys Compd,2008,459(1-2):491 (11):1500) [4]Zheng K H,Zhao S M,Wang J,et al.Fabrication,microstruc- [12]Edelbauer J.Schuller D.Lott O,et al.High temperature ture and properties of high chromium cast iron matrix composites squeeze casting of nickel based metal matrix composites with in- reinforced with ceramic particles.Foundry,2012,61(2):165 terpenetrating microstructure.Mater Sci Forum,2015,825-826:93邱 博等: 宏观颗粒增强铁基复合材料的制备与性能 图 13 复合材料及基体材料在高载下对磨环的磨损形貌 郾 (a) 复合材料; (b) 基体材料 Fig. 13 Friction ring wear morphology of composites and matrix material under high load: (a) composites; (b) metal matrix 过这些地方传递到对磨双方. 由于实际导热面积远 小于理论导热面积,因此可以产生很高的局部闪 温[22] ,造成摩擦面附近材料表面的软化,从而表现 为对磨环表面有黏着物的出现. 3 结论 (1)采用“随流混合 + 高压复合冶方法成功制备 了复合效果良好的 ZTA/ KmTBCr26 抗磨复合材料, 其内部颗粒分布均匀,颗粒与基体之间结合紧密,金 属液在高压作用下可以浸入陶瓷表面的微小间隙 内,形成犬牙交错的微机械啮合界面. (2)与单一 KmTBCr26 相比,ZTA/ KmTBCr26 复 合材料的冲击韧性显著下降,冲击断口形貌显示材 料的断裂主要是沿 ZTA 陶瓷颗粒内部发生的,没有 出现陶瓷颗粒整体脱落或者拔出的现象,说明复合 材料的界面结合强度较高. (3)在干摩擦实验条件下,采用“随流混合 + 高 压复合冶方法制备的 ZTA/ KmTBCr26 复合材料的抗 磨性与单一 KmTBCr26 相比显著提高,当载荷从 300 N 增加到 900 N 时,复合材料的相对抗磨性从 1郾 8 倍提高到 3郾 3 倍. 参 考 文 献 [1] Wiengmoon A, Chairuangsri T, Brown A, et al. Microstructural and crystallographical study of carbides in 30wt. % Cr cast irons. Acta Mater, 2005, 53(15): 4143 [2] Miracle D B. Metal matrix composites———from science to techno鄄 logical significance. Compos Sci Technol, 2005, 65 ( 15鄄16 ): 2526 [3] Akhtar F. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. J Al鄄 loys Compd, 2008, 459(1鄄2): 491 [4] Zheng K H, Zhao S M, Wang J, et al. Fabrication, microstruc鄄 ture and properties of high chromium cast iron matrix composites reinforced with ceramic particles. Foundry, 2012, 61(2): 165 (郑开宏, 赵散梅, 王娟, 等. 颗粒增强高铬铸铁基复合材料 的制备、组织与性能. 铸造, 2012, 61(2): 165) [5] Li Y F, Gao Y M, Wang B H, et al. Interface and wear charac鄄 teristics of high鄄Cr cast iron matrix composite reinforced with ce鄄 mented carbide particles. Mater Sci Eng Powder Metall, 2009, 14 (5): 331 (李烨飞, 高义民, 王必辉, 等. 颗粒增强高铬铸铁基复合材 料界面及摩擦学特性. 粉末冶金材料科学与工程, 2009, 14 (5): 331) [6] Francois H. Composite Wear Component: USA Patent, 6399176B1. 2002鄄鄄06鄄鄄04 [7] Chen Z H, Xiong H, Sun G X, et al. The casting infiltration ce鄄 ramic technology preliminary of wear resistant cast. Cem Guide New Epoch, 2015(2): 10 (陈忠华, 熊晖, 孙桂祥, 等. 耐磨铸件铸渗陶瓷技术的初探. 新世纪水泥导报, 2015(2): 10) [8] Kish O, Froumin N, Aizenshtein M, et al. Interfacial interaction and wetting in the Ta2O5 / Cu鄄鄄 Al system. J Mater Eng Perform, 2014, 23(5): 1551 [9] Han M Y, Chen W P, Yang S F. Preparation of stainless steel / Al2O3 ceramic composites by Ni鄄induced pressureless infiltration. Spec Cast Nonferrous Alloys, 2010, 30(8): 753 (韩孟岩, 陈维平, 杨少锋. Ni 诱导无压浸渗法制备不锈钢/ Al2O3 陶瓷复合材料. 特种铸造及有色合金, 2010, 30 (8): 753) [10] Liu A G, Guo M H, Zhao M H, et al. Microstructure and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection. Surf Coat Techn鄄 ol, 2007, 201(18): 7978 [11] Xu C, Jia C C, Guo H, et al. Effect of electroless nickel plating process on the properties of the plating layer on diamond / Cu com鄄 posite materials. J Univ Sci Technol Beijing, 2013, 35 ( 11 ): 1500 (徐超, 贾成厂, 郭宏, 等. 化学镀镍工艺对金刚石/ 铜复合 材料表面镀层性能的影响. 北京科技大学学报, 2013, 35 (11): 1500) [12] Edelbauer J, Schuller D, Lott O, et al. High temperature squeeze casting of nickel based metal matrix composites with in鄄 terpenetrating microstructure. Mater Sci Forum, 2015, 825鄄826: 93 ·977·