正在加载图片...
工程科学学报,第44卷,第X期 hematite ore.Int J Miner Process,2013,124:26 metallic iron grains in coal-based reduction of oolitic iron ore.Int [9]Rao M J.Ouyang C Z.Li G H.et al.Behavior of phosphorus Miner Metall Mater,2017,24(2):123 during the carbothermic reduction of phosphorus-rich oolitic [20]Hu J G,Wu M Q,Mao Y L.Latest development of direct hematite ore in the presence of Na SO.Int J Miner Process,2015, reduction processes of iron ores.Res Iron Steel,2006,34(2):53 143:72 (胡俊鸽,吴美庆,毛艳丽.直接还原炼铁技术的最新发展.钢铁 [10]Li Y L,Sun T C,Xu C Y,et al.New dephosphorizing agent for 研究,2006,34(2):53) phosphorus removal from high-phosphorus oolitic hematite ore in [21]Cao Z C,Sun T C,Xue X,et al.Iron recovery from discarded direct reduction roasting.J Central South Univ (Sci Technol), copper slag in a RHF direct reduction and subsequent 2012,43(3):827 grinding/magnetic separation process.Minerals,2016,6(4):119 (李永利,孙体昌,徐承焱,等.高磷蠣状赤铁矿直接还原同步脱 [22]Chu M S,Zhao Q J.Present status and development perspective of 磷新脱磷剂.中南大学学报(自然科学版),2012,43(3):827) direct reduction and smelting reduction in China.China Metall. [11]Xu C Y,Sun T C,Qi C Y,et al.Effects of reductants on direct 2008.18(9):1 reduction and synchronous dephosphorization of high- (储满生,赵庆杰.中国发展非高炉炼铁的现状及展望.中国冶 phosphorous oolitic hematite.Chin J Nonferrous Met,2011, 金,2008,18(9):1) 21(3):680 [23]Liang Z K,Yi L Y,Huang Z C.et al.A novel and green (徐承焱,孙体昌,祁超英,等.还原剂对高磷鲕状赤铁矿直接还 metallurgical technique of highly efficient iron recovery from 原同步脱磷的影响.中国有色金属学报,2011,21(3):680) refractory low-grade iron ores.ACS Sustain Chem Eng,2019. [12]Yu W,Tang Q Y,Chen J A,et al.Thermodynamic analysis of the 7(22):18726 carbothermic reduction of a high-phosphorus oolitic iron ore by [24]Ma B Z,Yang W J,Xing P,et al.Pilot-scale plant study on solid- FactSage.Int J Miner Metall Mater,2016,23(10):1126 state metalized reduction-magnetic separation for magnesium-rich [13]Zhang YY,Xue Q G,Wang G,et al.Phosphorus-containing nickel oxide ores.IntJ Miner Process,2017,169:99 mineral evolution and thermodynamics of phosphorus vaporization [25]Wu S C,Sun T C,Yang H F.Study on phosphorus removal of during carbothermal reduction of high-phosphorus iron ore. high-phosphorus oolitic hematite abroad by direct reduction and Metals,2018,8(6):451 magnetic separation.Met Mine,2019(11):109 [14]Sun Y S,Han Y X,Wei X C,et al.Non-isothermal reduction (吴世超,孙体昌,杨慧芬.国外某高磷鲡状赤铁矿直接还原-磁 kinetics of oolitic iron ore in ore/coal mixture.J Therm Anal Calorim,2016,123(1):703 选降磷研究.金属矿山,2019(11):109) [15]Sun YS,Han YX.Gao P,et al.Thermogravimetric study of coal [26]Yang M,Zhu Q S,Fan C L,et al.Roasting-induced phase change and its influence on phosphorus removal through acid leaching for based reduction of oolitic iron ore:Kinetics and mechanisms.Int/ Miner Process,2015,143:87 high-phosphorus iron ore.Int J Miner Metall Mater,2015,22(4): [16]Cha J W,Kim D Y,Jung S M.Distribution behavior of 346 phosphorus and metallization of iron oxide in carbothermic [27]Huang W S,Yan L,Wu S C,et al.Study on the process reduction of high-phosphorus iron ore.Merall Mater Trans B. mineralogy of a high phosphorus oolitic iron ore in abroad.Mer 2015,46(5):2165 Mie,2020(9:137 [17]Sun Y S,Han Y X,Gao P,et al.Distribution behavior of (黄武胜,延黎,吴世超,等.国外某高磷鲕状铁矿石工艺矿物学 phosphorus in the coal-based reduction of high-phosphorus- 研究.金属矿山,2020(9):137) content oolitic iron ore.Int J Miner Metall Mater,2014,21(4): [28]Guo Z Q,Zhu D Q,Pan J,et al.Innovative methodology for 331 comprehensive and harmless utilization of waste copper slag via [18]Li Y F,Han Y X,Sun Y S,et al.Growth behavior and size selective reduction-magnetic separation process.JClean Prod, characterization of metallic iron particles in coal-based reduction 2018,187:910 of oolitic hematite-coal composite briquettes.Minerals,2018 [29]Zhu DQ,Xu J W,Guo Z Q,et al.Synergetic utilization of copper 8(5:177 slag and ferruginous manganese ore via co-reduction followed by [19]Sun Y S,Han Y X,Li Y F,et al.Formation and characterization of magnetic separation process.Clean Prod,2020,250:119462hematite ore. Int J Miner Process, 2013, 124: 26 Rao  M  J,  Ouyang  C  Z,  Li  G  H,  et  al.  Behavior  of  phosphorus during  the  carbothermic  reduction  of  phosphorus-rich  oolitic hematite ore in the presence of Na2SO4 . Int J Miner Process, 2015, 143: 72 [9] Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct  reduction  roasting. J Central South Univ (Sci Technol), 2012, 43(3): 827 (李永利, 孙体昌, 徐承焱, 等. 高磷鲕状赤铁矿直接还原同步脱 磷新脱磷剂. 中南大学学报(自然科学版), 2012, 43(3):827) [10] Xu  C  Y,  Sun  T  C,  Qi  C  Y,  et  al.  Effects  of  reductants  on  direct reduction  and  synchronous  dephosphorization  of  high￾phosphorous  oolitic  hematite. Chin J Nonferrous Met,  2011, 21(3): 680 (徐承焱, 孙体昌, 祁超英, 等. 还原剂对高磷鲕状赤铁矿直接还 原同步脱磷的影响. 中国有色金属学报, 2011, 21(3):680) [11] Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic  reduction  of  a  high-phosphorus  oolitic  iron  ore  by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 [12] Zhang  Y  Y,  Xue  Q  G,  Wang  G,  et  al.  Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during  carbothermal  reduction  of  high-phosphorus  iron  ore. Metals, 2018, 8(6): 451 [13] Sun  Y  S,  Han  Y  X,  Wei  X  C,  et  al.  Non-isothermal  reduction kinetics  of  oolitic  iron  ore  in  ore/coal  mixture. J Therm Anal Calorim, 2016, 123(1): 703 [14] Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal￾based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 [15] Cha  J  W,  Kim  D  Y,  Jung  S  M.  Distribution  behavior  of phosphorus  and  metallization  of  iron  oxide  in  carbothermic reduction  of  high-phosphorus  iron  ore. Metall Mater Trans B, 2015, 46(5): 2165 [16] Sun  Y  S,  Han  Y  X,  Gao  P,  et  al.  Distribution  behavior  of phosphorus  in  the  coal-based  reduction  of  high-phosphorus￾content  oolitic  iron  ore. Int J Miner Metall Mater,  2014,  21(4): 331 [17] Li  Y  F,  Han  Y  X,  Sun  Y  S,  et  al.  Growth  behavior  and  size characterization  of  metallic  iron  particles  in  coal-based  reduction of  oolitic  hematite–coal  composite  briquettes. Minerals,  2018, 8(5): 177 [18] [19] Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 Hu  J  G,  Wu  M  Q,  Mao  Y  L.  Latest  development  of  direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 (胡俊鸽, 吴美庆, 毛艳丽. 直接还原炼铁技术的最新发展. 钢铁 研究, 2006, 34(2):53) [20] Cao  Z  C,  Sun  T  C,  Xue  X,  et  al.  Iron  recovery  from  discarded copper  slag  in  a  RHF  direct  reduction  and  subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 [21] Chu M S, Zhao Q J. Present status and development perspective of direct  reduction  and  smelting  reduction  in  China. China Metall, 2008, 18(9): 1 (储满生, 赵庆杰. 中国发展非高炉炼铁的现状及展望. 中国冶 金, 2008, 18(9):1) [22] Liang  Z  K,  Yi  L  Y,  Huang  Z  C,  et  al.  A  novel  and  green metallurgical  technique  of  highly  efficient  iron  recovery  from refractory  low-grade  iron  ores. ACS Sustain Chem Eng,  2019, 7(22): 18726 [23] Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid￾state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 [24] Wu  S  C,  Sun  T  C,  Yang  H  F.  Study  on  phosphorus  removal  of high-phosphorus  oolitic  hematite  abroad  by  direct  reduction  and magnetic separation. Met Mine, 2019(11): 109 (吴世超, 孙体昌, 杨慧芬. 国外某高磷鲕状赤铁矿直接还原−磁 选降磷研究. 金属矿山, 2019(11):109) [25] Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 [26] Huang  W  S,  Yan  L,  Wu  S  C,  et  al.  Study  on  the  process mineralogy  of  a  high  phosphorus  oolitic  iron  ore  in  abroad. Met Mine, 2020(9): 137 (黄武胜, 延黎, 吴世超, 等. 国外某高磷鲕状铁矿石工艺矿物学 研究. 金属矿山, 2020(9):137) [27] Guo  Z  Q,  Zhu  D  Q,  Pan  J,  et  al.  Innovative  methodology  for comprehensive  and  harmless  utilization  of  waste  copper  slag  via selective  reduction-magnetic  separation  process. J Clean Prod, 2018, 187: 910 [28] Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 [29] · 8 · 工程科学学报,第 44 卷,第 X 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有