正在加载图片...
6结论 目前,通过理论计算结合试验,对质子交换膜电解制氢的氢气渗透行为有了较深入的理解,不同 运行参数对氢气渗透的影响规律已取得一定进展,但在相关影响机理方面仍未统一,需后续研究进 一步探索与验证: (1)在质子交换膜电解制氢的常规运行压力范围内(3.5MPa),扩散系数与溶解度主要受温 度影响,压力产生的影响很小,温度升高则渗透率增大: (2)氢气在水中的渗透率约为干膜的5-10倍,但不同相对湿度膜的氢气渗透研究表明,由于 水与聚合物基质的相互作用,中间相与固相可能成为渗透的主体: (3)分压差对氢气渗透的影响表现出线性(渗透池环境)与非线性(电解制氢环境)两种关系, 非线性可能源于膜透水性提升与水通道结构改变引起的对流渗透: (4)氢气渗透率随电流密度升高而增大,氢过饱和是可能的影响机理, 高 电流密度下氢过饱和 度升高,导致通过膜的渗透增加。 参考文献 [1]Grigoriev SA.Fateev VN.Bessarabov D G,et al.Current status, esearch trends,and challenges in water electrolysis science and technology.Int J Hvdrogen Energ,2020,45(49):26036 [2]Lee H,Lee B,Byun M,et al.Economic and environmental analysis of PEM water electrolysis based on replacement moment and renewable electricity resources.Energ Comers Manage,2020,224(15):113477 [3]Kumar S S,Himabindu V.Hydrogen Production by PEM Water Electrolysis-A Review.Mater Sci Tech-lond,2019, 2(3):442 [4]Ayers K.High efficiency PEM water electrolysis:enabled by advanced catalysts,membranes,and processes.CurrOpin Chem Eng,2021,33:100719 [5]Koponen J,Kosonen A,Ruuskanen V,et al.Control and energy efficiency of PEM water electrolyzers in renewable energy systems.IntJ Hydrogen Energ 2017,42(50):29648 16]Suermann M.PatruA.Schmidt High pressure polymer eletrolyte water electrolysis:Test bench development and electrochemical analysisin Hydrogen Energ,2017,42(17):12076 [7]Lee B,Heo J,Kim S,et al.Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations.Energ Comers Manage,2018,162:139 [8]Sartory M,Wallnofer-Ogris E,Salman P,et al.Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar.Int J Hydrogen Energ,2017,42(52):30493 [9]Papakonstantinoy G,Sundmacher K.H2 permeation through N117 and its consumption by IrO,in PEM water electrolyzers.Electrochem Commun,2019,108:106578 [10]Afshari E,Khodabakhsh S,Jahantigh N,et al.Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer.Int J Hydrogen Energ,2021,46(19):11029 [11]Siracusano S,Trocino S,Briguglio N,et al.Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells./Power Sources,2020,468(2):228390 [12]Khatib F N,Wilberforce T,Ijaodola O,et al.Material degradation of components in polymer electrolyte membrane (PEM)electrolytic cell and mitigation mechanisms:A review.Renew Sust Energ Rev,2019,111:1 [13]Frensch S H,Fouda-Onana F,Serre G,et al.Influence of the operation mode on PEM water electrolysis degradation.Int JHydrogen Energ,2019,44(57):29889 [14]Schalenbach M,Tobias H,Paciok P et al.Gas Permeation through Nafion.Part 1:Measurements.J Phys Chem C,6 结论 目前,通过理论计算结合试验,对质子交换膜电解制氢的氢气渗透行为有了较深入的理解,不同 运行参数对氢气渗透的影响规律已取得一定进展,但在相关影响机理方面仍未统一,需后续研究进 一步探索与验证: (1) 在质子交换膜电解制氢的常规运行压力范围内(3.5 MPa),扩散系数与溶解度主要受温 度影响,压力产生的影响很小,温度升高则渗透率增大; (2) 氢气在水中的渗透率约为干膜的 5-10 倍,但不同相对湿度膜的氢气渗透研究表明,由于 水与聚合物基质的相互作用,中间相与固相可能成为渗透的主体; (3) 分压差对氢气渗透的影响表现出线性(渗透池环境)与非线性(电解制氢环境)两种关系, 非线性可能源于膜透水性提升与水通道结构改变引起的对流渗透; (4) 氢气渗透率随电流密度升高而增大,氢过饱和是可能的影响机理,高电流密度下氢过饱和 度升高,导致通过膜的渗透增加。 参 考 文 献 [1] Grigoriev S A, Fateev V N, Bessarabov D G, et al. Current status, research trends, and challenges in water electrolysis science and technology. Int J Hydrogen Energ, 2020, 45(49): 26036 [2] Lee H, Lee B, Byun M, et al. Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources. Energ Convers Manage, 2020, 224(15): 113477 [3] Kumar S S, Himabindu V. Hydrogen Production by PEM Water Electrolysis-A Review. Mater Sci Tech-lond, 2019, 2(3): 442 [4] Ayers K. High efficiency PEM water electrolysis: enabled by advanced catalysts, membranes, and processes. Curr Opin Chem Eng, 2021, 33: 100719 [5] Koponen J, Kosonen A, Ruuskanen V, et al. Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int J Hydrogen Energ, 2017, 42(50): 29648 [6] Suermann M, Patru A, Schmidt T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. Int J Hydrogen Energ, 2017, 42(17): 12076 [7] Lee B, Heo J, Kim S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energ Convers Manage, 2018, 162: 139 [8] Sartory M, Wallnofer-Ogris E, Salman P, et al. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. Int J Hydrogen Energ, 2017, 42(52): 30493 [9] Papakonstantinou G, Sundmacher K. H2 permeation through N117 and its consumption by IrOx in PEM water electrolyzers. Electrochem Commun, 2019, 108: 106578 [10] Afshari E, Khodabakhsh S, Jahantigh N, et al. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. Int J Hydrogen Energ, 2021, 46(19): 11029 [11] Siracusano S, Trocino S, Briguglio N, et al. Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. J Power Sources, 2020, 468(2): 228390 [12] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew Sust Energ Rev, 2019, 111: 1 [13] Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation. Int J Hydrogen Energ, 2019, 44( 57): 29889 [14] Schalenbach M, Tobias H, Paciok P, et al. Gas Permeation through Nafion. Part 1: Measurements. J Phys Chem C, 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有