《工程科学学报》录用稿,htps:/doi.org/10.13374/i,issn2095-9389.2021.08.02.003©北京科技大学2020 工程科学学报DO: 质子交换膜电解制氢氢气渗透研究进展 叶青,2,宋洁”,侯坤),郭志远),徐桂芝),邓占锋区,李宝让2) 1)全球能源互联网研究院有限公司先进输电技术国家重点实验室,北京1022092)华北电力大学能源动力与机械工程学院,北京102206 ☒通信作者,E-mail:dengzhanfeng(@geiri.sgcc.com.cn 摘要质子交换膜(PEM)电解制氢,由于对间歇性、波动性电源具有出色的响应能力, 为可再生能源制氢领 域的研究热点。基于质子交换膜优异的机械强度与气体隔绝能力,已成功实现PEM电解堆的高压运行并形成商业化。 然而,由于膜的吸水特性,高压PEM制氢(尤其是差压式,氢侧高压/氧侧常压仍存在氢气渗透问题,影响电解 堆的运行安全与效率。本文综述了PEM电解制氢氢气渗透的研究进展,直先乔绍了後透的基本理论,基于菲克定律 描述的渗透通量与渗透率、分压差的关系,综述了温度压力、膜水合程度气分压差对氢气渗透的影响规律。考虑 到电解制氢实际运行环境中存在电流,综述了电流密度对氢气渗透的影响。 此外, 对上述参数影响氢气渗透的相关 理论机制进行了总结。 关键词质子交换膜水电解:差压:氢气渗透:渗透率: 电汤 分类号TK91 Review on hydrogen permeation in PEM water electrolysis YE Oing2,SONG Jie,HOU Kun GUO Zht-yuan,XU Gui-zhi,DENG Zhan-feng LI Bao-rang?) 1)State Key Laboratory of Advanced Transmiss Technology,Global Energy Interconnection Research Institute Limited Company,Beijing 102209,China 2) School of Energy,Power and Mechanic al Engineering,North China Electric Power University,Beijing 102206,China Corresponding author,E-mail:dengzhanfeng@geiri.sgcc.com.cn ABSTRACT Due to the excellent responsiveness to intermittent and fluctuating power supplies,proton exchange membrane (PEM)water electrolysis has been a research hotspot in the field of hydrogen production with renewable energy. Based on PEMs oust standing properties of mechanical strength and gas separation,high-pressure operation of PEM electrolyzer has been successfully realized and commercialized.However,an important problem in high-pressure PEM water electrolysis(especially under differential pressure condition,high pressure in the cathode compartment/atmospheric pressure in the anode compartment)is the permeation of hydrogen through the membrane,which affects the safety and efficiency.In this article,the research progress of hydrogen permeation in PEM electrolysis is reviewed.Firstly,the theory of permeation is introduced.Secondly,based on the relationship between permeation flux,permeability and partial pressure difference described by Fick's law,effects of temperature/pressure,hydration degree of membrane,and partial pressure difference on hydrogen permeation are reviewed.In the normal operating pressure range (<3.5 MPa)for hydrogen production by PEM electrolysis,the diffusion coefficient and solubility are mainly affected by temperature,and the permeability increases with increasing temperature.The permeability of hydrogen in water is about 5-10 times that of dry film,and the permeability increases with increasing the relative humidity of the membrane.The influence of partial pressure difference on hydrogen 收稿日期:2021-08-02 基金项目:国家电网公司科技资助项目:差压式固体聚合物制氢膜电极研究(5500-202058448A-0-0-00)
工程科学学报 DOI: 质子交换膜电解制氢氢气渗透研究进展 叶 青 1,2),宋洁 1),侯 坤 1),郭志远 1),徐桂芝 1),邓占锋 1),李宝让 2) 1) 全球能源互联网研究院有限公司先进输电技术国家重点实验室,北京 102209 2) 华北电力大学能源动力与机械工程学院,北京 102206 通信作者,E-mail: dengzhanfeng@geiri.sgcc.com.cn 摘 要 质子交换膜(PEM)电解制氢,由于对间歇性、波动性电源具有出色的响应能力,已成为可再生能源制氢领 域的研究热点。基于质子交换膜优异的机械强度与气体隔绝能力,已成功实现 PEM 电解堆的高压运行并形成商业化。 然而,由于膜的吸水特性,高压 PEM 制氢(尤其是差压式,氢侧高压/氧侧常压)仍存在氢气渗透问题,影响电解 堆的运行安全与效率。本文综述了 PEM 电解制氢氢气渗透的研究进展,首先介绍了渗透的基本理论,基于菲克定律 描述的渗透通量与渗透率、分压差的关系,综述了温度/压力、膜水合程度、氢气分压差对氢气渗透的影响规律。考虑 到电解制氢实际运行环境中存在电流,综述了电流密度对氢气渗透的影响。此外,对上述参数影响氢气渗透的相关 理论机制进行了总结。 关键词 质子交换膜水电解;差压;氢气渗透;渗透率;电流密度 分类号 TK91 Review on hydrogen permeation in PEM water electrolysis YE Qing1,2) , SONG Jie1) , HOU Kun1) , GUO Zhi-yuan1) , XU Gui-zhi1) , DENG Zhan-feng1), LI Bao-rang2) 1) State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Limited Company, Beijing 102209, China 2) School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China Corresponding author, E-mail: dengzhanfeng@geiri.sgcc.com.cn ABSTRACT Due to the excellent responsiveness to intermittent and fluctuating power supplies, proton exchange membrane (PEM) water electrolysis has been a research hotspot in the field of hydrogen production with renewable energy. Based on PEM’s outstanding properties of mechanical strength and gas separation, high-pressure operation of PEM electrolyzer has been successfully realized and commercialized. However, an important problem in high-pressure PEM water electrolysis (especially under differential pressure condition, high pressure in the cathode compartment/atmospheric pressure in the anode compartment) is the permeation of hydrogen through the membrane, which affects the safety and efficiency. In this article, the research progress of hydrogen permeation in PEM electrolysis is reviewed. Firstly, the theory of permeation is introduced. Secondly, based on the relationship between permeation flux, permeability and partial pressure difference described by Fick's law, effects of temperature/pressure, hydration degree of membrane, and partial pressure difference on hydrogen permeation are reviewed. In the normal operating pressure range (< 3.5 MPa) for hydrogen production by PEM electrolysis, the diffusion coefficient and solubility are mainly affected by temperature, and the permeability increases with increasing temperature. The permeability of hydrogen in water is about 5-10 times that of dry film, and the permeability increases with increasing the relative humidity of the membrane. The influence of partial pressure difference on hydrogen 收稿日期:2021-08-02 基金项目:国家电网公司科技资助项目:差压式固体聚合物制氢膜电极研究(5500-202058448A-0-0-00) 《工程科学学报》录用稿,https://doi.org/10.13374/j.issn2095-9389.2021.08.02.003 ©北京科技大学 2020 录用稿件,非最终出版稿
permeation shows linear dependence in permeation cell and quadratic dependence in real electrolysis.The quadratic dependence may be attributed to the convective permeation caused by the increase in membrane water permeability and changes in the water channel.Thirdly,considering the current in real operating conditions of electrolysis,the effect of current density on hydrogen permeation is reviewed.The permeability increases with the increase of current density,which may be attributed to the increase of hydrogen supersaturation at high current density.In addition,the relevant theoretical mechanisms of the above parameters affecting hydrogen permeation are reviewed.KEY WORDS PEM water electrolysis:Differential pressure;Hydrogen permeation;Permeability;Current density 质子交换膜(PEM)电解制氢,作为适应可再生能源制氢的先进技术,是国内外大力发展的热 点。不但可促进新能源规模化消纳,绿电制取的氢气还可广泛用于交通运输、合成氨、氢治金等, 实现多领域深度碳减排4,1。基于质子交换膜优异的机械性能与气体隔绝能高压PEM电解堆已 实现商业化6!。但由于膜的吸水特性,在高压PEM电解堆运行过程中, 仍在《体渗透问题R,o。 在低电流密度区,气体渗透与安全、效率密切相关,而在高电流密度区, 渗透影响膜的衰减-11。因 此,明晰气体渗透的理论机制,研究不同运行参数对渗透的影响规律,称 质子交换膜电解堆的安 全、高效运行至关重要。 目前,在质子交换膜电解制氢气体渗透的相关研究中, 一方面采用理论计算方法,通过建立渗 透模型,对渗透率进行定量计算:另一方面利用试验测量方法,测试环境包括渗透池与电解池两类。 二者区别在于渗透池可以模拟电解制氢运行时的温度、压等条件,但无法施加电流,而在电解池 中进行原位测试时,能够全面评估各类参数对渗透的影响特别是不同运行电流密度下的气体渗透 行为。此外,在质子交换膜电解制氢环境中,相对氟气 氢气渗透产生的影响更为严重,本文主 要综述了各类操作条件变化对氢气渗透影响规律的研究进用 1渗透基本理论14 粒子或分子的随机热运动引起布朗运动导致扩散,分子在距离d上的浓度差△c会产生渗透通量 Φ,如菲克定律所描述: D=-DAc (1) 其中,D表示分子在介质中的散系数。 根据亨利定律,介质中溶解气体的浓度cas与其分压Psa及在介质中的溶解度S密切相关,可 以表示为: (2) 由扩散引趣的气体渗透率是扩散系数与该气体在介质中溶解度的乘积: Egas Dgas Sgas (3) 当膜将两个分压不同的腔室隔开时,利用式(2)与(3),菲克定律可以表示为分压差△p的函数: Ap gas gas =gas d (4) 由式(4)可以看出,影响气体渗透的因素主要有以下几个方面,一是温度、压力等外界参数,通 过影响扩散系数D与溶解度S对渗透率产生影响:二是水合程度、厚度等膜的特性:三是膜两侧 的分压差。此外,在电解制氢实际工况中还存在运行电流,下面将从上述几方面对氢气渗透的影响 规律进行综述
permeation shows linear dependence in permeation cell and quadratic dependence in real electrolysis. The quadratic dependence may be attributed to the convective permeation caused by the increase in membrane water permeability and changes in the water channel. Thirdly, considering the current in real operating conditions of electrolysis, the effect of current density on hydrogen permeation is reviewed. The permeability increases with the increase of current density, which may be attributed to the increase of hydrogen supersaturation at high current density. In addition, the relevant theoretical mechanisms of the above parameters affecting hydrogen permeation are reviewed.KEY WORDS PEM water electrolysis; Differential pressure; Hydrogen permeation; Permeability; Current density 质子交换膜(PEM)电解制氢,作为适应可再生能源制氢的先进技术,是国内外大力发展的热 点[1-3]。不但可促进新能源规模化消纳,绿电制取的氢气还可广泛用于交通运输、合成氨、氢冶金等, 实现多领域深度碳减排[4, 5]。基于质子交换膜优异的机械性能与气体隔绝能力,高压 PEM 电解堆已 实现商业化[6-8]。但由于膜的吸水特性,在高压 PEM 电解堆运行过程中,仍存在气体渗透问题[9, 10]。 在低电流密度区,气体渗透与安全、效率密切相关,而在高电流密度区,渗透影响膜的衰减[11-13]。因 此,明晰气体渗透的理论机制,研究不同运行参数对渗透的影响规律,对于质子交换膜电解堆的安 全、高效运行至关重要。 目前,在质子交换膜电解制氢气体渗透的相关研究中,一方面采用理论计算方法,通过建立渗 透模型,对渗透率进行定量计算;另一方面利用试验测量方法,测试环境包括渗透池与电解池两类 。 二者区别在于渗透池可以模拟电解制氢运行时的温度、压力等条件,但无法施加电流,而在电解池 中进行原位测试时,能够全面评估各类参数对渗透的影响,特别是不同运行电流密度下的气体渗透 行为。此外,在质子交换膜电解制氢环境中,相对于氧气,氢气渗透产生的影响更为严重,本文主 要综述了各类操作条件变化对氢气渗透影响规律的研究进展。 1 渗透基本理论[14] 粒子或分子的随机热运动引起布朗运动导致扩散,分子在距离 d 上的浓度差∆c 会产生渗透通量 Φ,如菲克定律所描述: d c D (1) 其中,D 表示分子在介质中的扩散系数。 根据亨利定律,介质中溶解气体的浓度 cgas与其分压 pgas及在介质中的溶解度 Sgas密切相关,可 以表示为: cgas pgasSgas (2) 由扩散引起的气体渗透率是扩散系数与该气体在介质中溶解度的乘积: gas DgasSgas (3) 当膜将两个分压不同的腔室隔开时,利用式(2)与(3),菲克定律可以表示为分压差 Δpgas的函数: d pgas gas gas (4) 由式(4)可以看出,影响气体渗透的因素主要有以下几个方面,一是温度、压力等外界参数,通 过影响扩散系数 Dgas与溶解度 Sgas对渗透率产生影响;二是水合程度、厚度等膜的特性;三是膜两侧 的分压差。此外,在电解制氢实际工况中还存在运行电流,下面将从上述几方面对氢气渗透的影响 规律进行综述。 录用稿件,非最终出版稿
2温度压力对氢气渗透率的影响 Ito等sm总结了氢气在水中的溶解度S随外界温度与压力的变化规律,如图1所示。可以看出, 当压力处于1-100atm范围内,溶解度保持相对稳定,而当压力高于100atm时,溶解度随压力的升 高而降低。基于此,Battino等s提出了1atm分压、273-353K条件下氢气在水中的溶解度公式: lnxH,=-48.1611+ 5528.4 +16893ln (5) T 1.1x10 0o of B. 10 9x10 -1000am 8x10 至7x10 6x10 2.6 2.8 3.0 32 1000/T[10K 版稿 ■1氢气在液态水中溶解度S随 变化的阿瑞尼斯图7 Fig.1 Arrhenius plots of hydrogen solubili (in liquid waters Wise等测试了氢气在10到60℃范围内的扩散系数 提出了扩散系数与温度的函数关系式, 其中D=4.9(±0.3)cm2s,E=16.51(0.17)kJmo: D=Doexp(-- 式(6) 在高压PEM电解制氢的常规运行压力范围内(3.5MPa),扩散系数与溶解度主要受温度影响, 而压力产生的影响很小。因此,渗透率也击要与温度相关。图3为氢气在不同干湿状态Nafionl17膜 中渗透率与温度关系的Arrhenius曲线s,9-。可以看出,随温度升高,渗透率呈增大的趋势。Nafion 湿膜中的氢气渗透率约为干膜的50倍 Nafion干膜与PTFE的氢气渗透率接近。 录用高
2 温度/压力对氢气渗透率的影响 Ito 等[15-17]总结了氢气在水中的溶解度 S 随外界温度与压力的变化规律,如图 1 所示。可以看出, 当压力处于 1-100 atm 范围内,溶解度保持相对稳定,而当压力高于 100 atm 时,溶解度随压力的升 高而降低。基于此,Battino 等[8]提出了 1 atm 分压、273-353 K 条件下氢气在水中的溶解度公式: ) 100 16 8893ln( 5528 45 ln 481611 2 T . T . x . H (5) 图 1 氢气在液态水中溶解度 S 随温度 T 变化的阿瑞尼斯图[15-17] Fig.1 Arrhenius plots of hydrogen solubility (SH2) in liquid water[15-17] Wise 等[18]测试了氢气在 10 到 60 °C 范围内的扩散系数,提出了扩散系数与温度的函数关系式, 其中 D0=4.9(±0.3) cm2 ·s-1,ED=16.51(±0.17) kJ·mol-1: ex ( ) 0 RT E D D p D 式(6) 在高压 PEM 电解制氢的常规运行压力范围内(3.5 MPa),扩散系数与溶解度主要受温度影响, 而压力产生的影响很小。因此,渗透率也主要与温度相关。图 3 为氢气在不同干湿状态 Nafion117 膜 中渗透率与温度关系的 Arrhenius 曲线[15, 19-26]。可以看出,随温度升高,渗透率呈增大的趋势。Nafion 湿膜中的氢气渗透率约为干膜的 5-10 倍,Nafion 干膜与 PTFE 的氢气渗透率接近。 录用稿件,非最终出版稿
Kochiet al.(Nafion 111.112) 8e 10% ● ◆ a0 10% ● 10w 出版稿 2.6 2.8 3.0 32 1000T[103K7 ■3氢气在不同干湿状态Nafion1177质子交换膜中渗透率的阿瑞尼斯图s,2洶 Fig.3 Arrhenius plots of hydrogen permeabilityinafion7 membrane at dry and wet conditionss 3膜水合程度对氨气渗透率的响 Schalenbach等I4通过试验测量了膜在不同水合程度下的氢气渗透率,测量是在80℃、膜两侧 压力为1atm(分别为H2与N2)条件下进行的,通过对膜吹扫不同相对湿度的气体,使Nafion膜的 水合程度发生变化,结果如图4所示。可以看出,氢渗透率随相对湿度的升高而增加。膜的水合程度 随气体相对湿度的增加而提高, 当顺发生水合时,水以水通道的形式积聚,由于水的氢气渗透率是 干膜的5-10倍,通过水通道的 渗透可以绕过固相路径(如图5所示),从而增大了氢渗透率。 normalized water content(%) 录用稿 2329385081 100 saturated water vapor liquid 3 water 2 NR212@80°C dry Hydrogen 0 20 40 60 80 100 relative humidity(%) 圆4 Nafion212膜在80C条件下的渗透率与相对湿度、归一化水含量的关系 Fig.4 Permeability of Nafion 212 at 80C as a function of relative humidity and normalized water content
图 3 氢气在不同干湿状态 Nafion117 质子交换膜中渗透率的阿瑞尼斯图[15, 19-26] Fig.3 Arrhenius plots of hydrogen permeability in a nafion 117 membrane at dry and wet conditions[15, 19-26] 3 膜水合程度对氢气渗透率的影响 Schalenbach 等[14]通过试验测量了膜在不同水合程度下的氢气渗透率,测量是在 80 °C、膜两侧 压力为 1 atm(分别为 H2与 N2)条件下进行的,通过对膜吹扫不同相对湿度的气体,使 Nafion 膜的 水合程度发生变化,结果如图 4 所示。可以看出,氢渗透率随相对湿度的升高而增加。膜的水合程度 随气体相对湿度的增加而提高,当膜发生水合时,水以水通道的形式积聚,由于水的氢气渗透率是 干膜的 5-10 倍,通过水通道的气体渗透可以绕过固相路径(如图 5 所示),从而增大了氢渗透率。 图 4 Nafion212 膜在 80 °C 条件下的渗透率与相对湿度、归一化水含量的关系[14] Fig.4 Permeability of Nafion 212 at 80 °C as a function of relative humidity and normalized water content[14] 录用稿件,非最终出版稿
Dry PEM Hydrated PEM Permeation through the solid phase H2 Petmeation between the solid phase pathway 圖5氢气以不同路径渗透通过PEM的示意图:灰色区域代表固相,蓝色区域代表水相,白色代表孔洞,左侧 为干膜,右侧为湿膜 Fig.5 Descriptive sketch of the pathways for the gas permeation through a segment ofa PEM exemplified for hydrogen molecules.The solid polymeric phase is depicted as the gray area,water as the blue area and pores filled with gas as the white area.Left:Dry PEM.Right:Hydrated PEM 为了进一步解释氢气渗透率随Nafior膜水合程度的变化关系,并对气体在水合膜中的渗透机制 进行分析,基于水合Nafion膜的微观结构,Schalenbach等2建立了渗透模型并开展理论计算。通过 在水相与固相之外加入中间相(如图6所示),并改变中间相与固相的渗透率,将模型确定的总渗 透率与实测数据进行拟合。结果发现,只有放大中间相与固相的渗透率时,模拟数据才能与实验值 一致。与仅通过水相的模拟渗透率相比,通过所有个相的交替渗透使整体渗透率增加了5.4倍, 即水合膜约81%的氢渗透率归因于中间相和固相。该研冤对水合Nafion膜中氢气渗透的路径提出了 新的观点,作者进一步推断了中间相与固相渗透率增伏的原因,中间相较高的氢气渗透率源于水相 中的氢键网络不太明显,且在该状态下范德张力较弱,而固相渗透率的增加源于聚合物基质因吸水 而软化,因为水可充当聚合物基质的增塑剂。 200 录用稿 0 50 100150200 圖6 Nafior膜三维结构模型的截面图,灰色区域:固相,蓝色区域:水相,绿色区域:中间相7 Fig.6 Two dimensional cross-section of the modeled three-dimensional cubic structure of Nafion.Gray area:solid phase.Blue area:aqueous phase.Green area:Intermediate phase 4压差的形响 4.1渗与气分压差的线性关系 Schalenbach等l研究了Nafion117膜的氢渗透与氢气分压差的关系,在膜两侧分别通入氢气与 氮气,并在两种不同氮气压力条件下进行测量(1与5bar)。如果压差能够作为气体透过膜的驱动 力,则膜在压差下的氢渗透率将大于平衡压力下的氢渗透率。但从结果可以看出,1与5bar不同氮
图 5 氢气以不同路径渗透通过 PEM 的示意图: 灰色区域代表固相, 蓝色区域代表水相, 白色代表孔洞; 左侧 为干膜, 右侧为湿膜[14] Fig.5 Descriptive sketch of the pathways for the gas permeation through a segment of a PEM exemplified for hydrogen molecules. The solid polymeric phase is depicted as the gray area, water as the blue area and pores filled with gas as the white area. Left: Dry PEM. Right: Hydrated PEM[14] 为了进一步解释氢气渗透率随 Nafion 膜水合程度的变化关系,并对气体在水合膜中的渗透机制 进行分析,基于水合 Nafion 膜的微观结构,Schalenbach 等[27]建立了渗透模型并开展理论计算。通过 在水相与固相之外加入中间相(如图 6 所示),并改变中间相与固相的渗透率,将模型确定的总渗 透率与实测数据进行拟合。结果发现,只有放大中间相与固相的渗透率时,模拟数据才能与实验值 一致。与仅通过水相的模拟渗透率相比,通过所有三个相的交替渗透使整体渗透率增加了 5.4 倍, 即水合膜约 81%的氢渗透率归因于中间相和固相。该研究对水合 Nafion 膜中氢气渗透的路径提出了 新的观点,作者进一步推断了中间相与固相渗透率增大的原因,中间相较高的氢气渗透率源于水相 中的氢键网络不太明显,且在该状态下范德华力较弱,而固相渗透率的增加源于聚合物基质因吸水 而软化,因为水可充当聚合物基质的增塑剂。 图 6 Nafion 膜三维结构模型的截面图, 灰色区域: 固相, 蓝色区域: 水相, 绿色区域: 中间相[27] Fig.6 Two dimensional cross-section of the modeled three-dimensional cubic structure of Nafion. Gray area: solid phase. Blue area: aqueous phase. Green area: Intermediate phase[27] 4 压差的影响 4.1 渗透与氢气分压差的线性关系 Schalenbach 等[14]研究了 Nafion117 膜的氢渗透与氢气分压差的关系,在膜两侧分别通入氢气与 氮气,并在两种不同氮气压力条件下进行测量(1 与 5 bar)。如果压差能够作为气体透过膜的驱动 力,则膜在压差下的氢渗透率将大于平衡压力下的氢渗透率。但从结果可以看出,1 与 5 bar 不同氮 录用稿件,非最终出版稿
气压力条件下通过膜的氢渗透量相等,如图7所示。因此,在所考虑的压力范围内,压差作为气体 以对流形式通过Nafion膜渗透的驱动力可忽略不计。这主要是由于当施加的压差低于Nafion膜水通 道中的毛细管压力时,气体、液体通过Nafior膜水通道的传输不受压差驱动。这也表明了在该条件 下,通过Nafior膜的氢渗透具有扩散性质,即以布朗运动溶解的气体形式通过膜渗透。根据式(4), 渗透与氢气分压差的线性关系也说明了渗透率在5bar的压力范围内保持恒定,通过渗透率与扩散 系数、溶解度的关系式e=DS,印证了扩散系数D与溶解度S在5bar范围内不随压力变化,与文献 结果一致。 12 PN2=1bar b X… PN2=5bar 8 Fit 6 Nafion®N117 fully hydrated @80°C PH2(bar) 围7通过Nafionl17膜的氢气渗透通量密度与氢气分压的关系曲线 Fig.1 Measured hydrogen permeation flux density through a Naffon N117 membrane as a function of partial hydrogen pressu 4.2渗漫与直气分压差的非线性关系 Schalenbach等开展的氢气渗透研究是在渗透池境中进行的,为无电流状态,结果显示了渗 透随氢气分压差的线性关系。但在电解制氢过程中”存在电流的影响,基于此,Trinke等2研究了 电解制氢实际环境中氢气渗透随压力差的变化规律,结果如图8所示。可以看出,在四种不同温度 条件下,氢气渗透与分压差的关系均表现出二次相关性。 0.8 15.4 60°C 50°C 录用稿 11.6 40°C A 22°C Quadratic 。 7.7 。 0.2 ◆。2。*◆◆◆ 3.9 0 0 10 20 30 Pressure difference Ap in bar 圖8不同温度下电解池中氢气渗透通量与分压差的关系曲线(阳极压力1bar)P Fig.8 Hydrogen permeation flux as a function of pressure difference for a PEM electrolyzer cell at asymmetric pressure and at different temperature(p=1 bar) 基于渗透与分压差的线性关系9,2),许多研究得出氢气渗透为纯扩散性质的结论,但该研究结 果显示出无法用纯扩散描述的二次相关性。据此,作者在扩散模型中扩展了对流传输,以解释二次
气压力条件下通过膜的氢渗透量相等,如图 7 所示。因此,在所考虑的压力范围内,压差作为气体 以对流形式通过 Nafion 膜渗透的驱动力可忽略不计。这主要是由于当施加的压差低于 Nafion 膜水通 道中的毛细管压力时,气体、液体通过 Nafion 膜水通道的传输不受压差驱动。这也表明了在该条件 下,通过 Nafion 膜的氢渗透具有扩散性质,即以布朗运动溶解的气体形式通过膜渗透。根据式(4), 渗透与氢气分压差的线性关系也说明了渗透率在 5 bar 的压力范围内保持恒定,通过渗透率与扩散 系数、溶解度的关系式 ε=DS,印证了扩散系数 D 与溶解度 S 在 5 bar 范围内不随压力变化,与文献 [7]结果一致。 图 7 通过 Nafion117 膜的氢气渗透通量密度与氢气分压的关系曲线[14] Fig.1 Measured hydrogen permeation flux density through a Nafion N117 membrane as a function of partial hydrogen pressure[14] 4.2 渗透与氢气分压差的非线性关系 Schalenbach 等开展的氢气渗透研究是在渗透池环境中进行的,为无电流状态,结果显示了渗 透随氢气分压差的线性关系。但在电解制氢过程中,存在电流的影响,基于此,Trinke 等[28]研究了 电解制氢实际环境中氢气渗透随压力差的变化规律,结果如图 8 所示。可以看出,在四种不同温度 条件下,氢气渗透与分压差的关系均表现出二次相关性。 图 8 不同温度下电解池中氢气渗透通量与分压差的关系曲线(阳极压力 1 bar)[28] Fig.8 Hydrogen permeation flux as a function of pressure difference for a PEM electrolyzer cell at asymmetric pressure and at different temperature (pa=1 bar) [28] 基于渗透与分压差的线性关系[19, 23],许多研究得出氢气渗透为纯扩散性质的结论,但该研究结 果显示出无法用纯扩散描述的二次相关性。据此,作者在扩散模型中扩展了对流传输,以解释二次 录用稿件,非最终出版稿
相关性,结果如图9所示。可以看出,纯扩散渗透(图9虚线)仅适用于低压差范围,当压差在5 br以下时,对流渗透(图9点线)所占的比重很低,整体仍表现出扩散性质:而当压力差进一步 升高时,由于对流渗透与压力差的二次相关性,对流在整体渗透中占的比重越来越大。 0.8 ◆60°C 一N唱a 15.4 0.6 0.4 7.7 三 版稿 3.9 0 10 20 30 Pressure difference Ap in bar ■960℃条件下氢气渗透通量与压力差的关系曲线,蓝点:实测值,实线:总渗透通量计算值,点线:纯对流 渗透计算值,虚线:纯扩散渗透t算值P Fig.Hydrogen permeation flux at 60C as a function of pressure difference.Solid line:Theoretical approach with convective and diffusive transport.Dotted line:Pure convective permeation approach.Dashed line:Pure diffusive permetionapproach 作者进一步分析了对流渗透形成的原因,对子生解制氢过程中的对流氢传输,需要高透水率促 使水从阴极流向阳极。可能的机制包含两个方面:是膜的透水性随离子交换当量(EW值)的降 低而提升,研究显示EW值降低100gmo会导致膜透水性提升一个数量级2,与Nafion117(EW 值为1100gmo)相比,该研究所用膜的离子交换当量要低的多(EW值为910gmo),约200 go的差异可能会使透水性提高约两个数量级。另一方面的原因在于操作条件的影响,如图10所 示,该研究是在电解制氢工作状态下进行的,电渗作用会促使水从阳极传输至阴极0划,导致膜中 的水通道变宽,同时使得阴极侧的膜水界面由疏水性转变为亲水性,降低了界面传输阻抗,从而 有助于水在压力差作用下由阴极流向阳极,形成对流渗透。 (a) Cathode (b) H,O Drag 月Diive..2 H2 Diffusive 2H+2e→H2 ■10测量条件示意图:()水电解条件下测量;(b)渗透池条件下测量(未施加电流)P7 Fig.10 Schematically measurement conditions for(a)measurement during electrolysis (b)measurement in a permeation cell without applying current 5电流密度对渗透的形响 Trinke等]研究了电流密度对氢气渗透的影响,该研究是在0.05-1Acm2、30-80C、1-31bar阴极 压力条件下进行的,图11示出了80C、阴极压力为1bar条件下的结果。从图11a可以看出,氧中 氢体积分数随电流密度的变化显示了双曲线的特征趋势,主要是由于析氧量随电流密度升高而增加
相关性,结果如图 9 所示。可以看出,纯扩散渗透(图 9 虚线)仅适用于低压差范围,当压差在 5 bar 以下时,对流渗透(图 9 点线)所占的比重很低,整体仍表现出扩散性质;而当压力差进一步 升高时,由于对流渗透与压力差的二次相关性,对流在整体渗透中占的比重越来越大。 图 9 60 °C 条件下氢气渗透通量与压力差的关系曲线, 蓝点: 实测值, 实线: 总渗透通量计算值, 点线: 纯对流 渗透计算值, 虚线: 纯扩散渗透计算值[28] Fig.9 Hydrogen permeation flux at 60 °C as a function of pressure difference. Solid line: Theoretical approach with convective and diffusive transport. Dotted line: Pure convective permeation approach. Dashed line: Pure diffusive permeation approach[28] 作者进一步分析了对流渗透形成的原因,对于电解制氢过程中的对流氢传输,需要高透水率促 使水从阴极流向阳极。可能的机制包含两个方面:一是膜的透水性随离子交换当量(EW 值)的降 低而提升,研究显示 EW 值降低 100 g·mol-1会导致膜透水性提升一个数量级[29],与 Nafion117(EW 值为 1100 g·mol-1)相比,该研究所用膜的离子交换当量要低的多(EW 值为 910 g·mol-1),约 200 g·mol-1的差异可能会使透水性提高约两个数量级。另一方面的原因在于操作条件的影响,如图 10 所 示,该研究是在电解制氢工作状态下进行的,电渗作用会促使水从阳极传输至阴极[30-32],导致膜中 的水通道变宽,同时使得阴极侧的膜/水界面由疏水性转变为亲水性,降低了界面传输阻抗,从而 有助于水在压力差作用下由阴极流向阳极,形成对流渗透。 图 10 测量条件示意图: (a) 水电解条件下测量; (b) 渗透池条件下测量(未施加电流) [27] Fig.10 Schematically measurement conditions for (a) measurement during electrolysis (b) measurement in a permeation cell without applying current[27] 5 电流密度对渗透的影响 Trinke 等[33]研究了电流密度对氢气渗透的影响,该研究是在 0.05-1 A·cm-2、30-80 °C、1-31 bar 阴极 压力条件下进行的,图 11 示出了 80 °C、阴极压力为 1 bar 条件下的结果。从图 11a 可以看出,氧中 氢体积分数随电流密度的变化显示了双曲线的特征趋势,主要是由于析氧量随电流密度升高而增加 。 录用稿件,非最终出版稿
在低电流密度下,阳极的氢含量非常高,这对于控制制氢系统的安全十分关键。将氧中氢体积分数 换算为氢渗透率,结果如图11b所示,渗透率随电流密度增大呈线性增加的趋势。此外,图11中同 时列出了其他文献的研究结果4,均,尽管所采用的膜与测试条件并不完全一致,但氧中氢体积分数 与渗透率随电流密度均表现出类似的变化规律。 (a) (b)0.35 ▲-Trinke et a.33j ▲Trinke et al.33j Schalenbach et al.[341 0.3 ■Schalenbach e时al L34 7 -Grigoriev et al.351 ●Grigoriev et al. 35 (s-m)/ 0.25 .82 0.2 3.86 2 4 0.157 2.89 0.1 1 Tm223.70-1.04 0.05 schm1.I23:146+3.33 Gg-24非2.21+024 00 0.5 1.5 2 0.5 15 Current density i in A/cm Current density i in A/cm ■1不同文献中电流密度对氢气渗透影响的关系曲线对比(EF-40,≥80 Cp=1 bar脚N117,T=80℃, p=7bar,N117,T=85C,p.=1 barls:(a)氧中氢体积分数,b)氢气渗透率 Fig.11 Comparison of effects of current density on the hydrogen permeation (EF-40,7=80C,p=1 barN117, T=80C.p=7 bar,N117,T=85C.p=1 bar)(a)hydtogen vol.fraction,(b)hydrogen permeation rate 研究结果显示随电流密度增大,氢渗透率增加。但考虑到电解制氢工作条件,高电密下电渗作 用引起的水通量可能导致溶解的氢由阳极传输回阴极,则电流密度增大可能导致氢渗透率降低。针 对该问题,作者对比分析了电流密度升高对渗透可能生的影响机制,包括催化层局部压力升高6 训、局部温度升高0,川、膜中水通道结构改变27、氢过饱和248。其中,氢过饱和理论能够较合理地解 释渗透率随电流密度增大的规律,即阴极催化层的离聚物内溶解的氢达到过饱和状态。如图12所示, 假设分子氢在阴极催化层的水中首先以溶解氢的形式产生,从溶解氢转变为气态氢,需要经过路径 A,一旦达到氢溶解度的最大值,便会发生路径A的各步骤,但这种传质过程是受限的。因此,离 聚物中溶解的氢浓度高于理论值,且施加的电流密度越高,溶解的氢含量越高,导致溶解氢的过饱 和度升高。过饱和的氢将通过路径邓渗透至阳极,最终导致氢渗透增加。 Cathode 录用稿 ate Path B Permeation yst particle hode z(g) Ha PTL ■12阴极催化层离聚物中氢过饱和示意图.路径A的传质过程包括以下步骤:上:从催化剂解吸,亚:通过离 聚物传输,Ⅲ:界面传输至液态水,V:通过水传输,V:气泡形成/增长,Ⅵ:界面传输至气相 Fig.12 Sketch of the hydrogen supersaturation within the ionomer film of the cathode.Here the mass transfer (Path A)is partitioned into:I:desorption from the catalyst,II:transport through the ionomer,III:interfacial transfer into liquid water,IV:transport through water,V:increasing bubble formation/growing,VI:interfacial transfer into the gas phase
在低电流密度下,阳极的氢含量非常高,这对于控制制氢系统的安全十分关键。将氧中氢体积分数 换算为氢渗透率,结果如图 11b 所示,渗透率随电流密度增大呈线性增加的趋势。此外,图 11 中同 时列出了其他文献的研究结果[34, 35],尽管所采用的膜与测试条件并不完全一致,但氧中氢体积分数 与渗透率随电流密度均表现出类似的变化规律。 图 11 不同文献中电流密度对氢气渗透影响的关系曲线对比(EF-40, T=80 °C, pc=1 bar[33]; N117, T=80 °C, pc=7 bar[34]; N117, T=85 °C, pc=1 bar[35]): (a)氧中氢体积分数; (b) 氢气渗透率 Fig.11 Comparison of effects of current density on the hydrogen permeation (EF-40, T=80 °C, pc=1 bar[33]; N117, T=80 °C, pc=7 bar[34]; N117, T=85 °C, pc=1 bar[35]): (a) hydrogen vol. fraction, (b) hydrogen permeation rate 研究结果显示随电流密度增大,氢渗透率增加。但考虑到电解制氢工作条件,高电密下电渗作 用引起的水通量可能导致溶解的氢由阳极传输回阴极,则电流密度增大可能导致氢渗透率降低。针 对该问题,作者对比分析了电流密度升高对渗透可能产生的影响机制,包括催化层局部压力升高[36- 39]、局部温度升高[40, 41]、膜中水通道结构改变[27]、氢过饱和[42-48]。其中,氢过饱和理论能够较合理地解 释渗透率随电流密度增大的规律,即阴极催化层的离聚物内溶解的氢达到过饱和状态。如图 12 所示, 假设分子氢在阴极催化层的水中首先以溶解氢的形式产生,从溶解氢转变为气态氢,需要经过路径 A,一旦达到氢溶解度的最大值,便会发生路径 A 的各步骤,但这种传质过程是受限的。因此,离 聚物中溶解的氢浓度高于理论值,且施加的电流密度越高,溶解的氢含量越高,导致溶解氢的过饱 和度升高。过饱和的氢将通过路径 B 渗透至阳极,最终导致氢渗透增加。 图 12 阴极催化层离聚物中氢过饱和示意图. 路径 A 的传质过程包括以下步骤: Ⅰ: 从催化剂解吸, Ⅱ: 通过离 聚物传输, Ⅲ: 界面传输至液态水, Ⅳ: 通过水传输, Ⅴ: 气泡形成/增长, Ⅵ: 界面传输至气相[33] Fig.12 Sketch of the hydrogen supersaturation within the ionomer film of the cathode. Here the mass transfer (Path A) is partitioned into: : desorption from the catalyst, : transport through the ionomer, : interfacial Ⅰ Ⅱ Ⅲ transfer into liquid water, : transport through water, : increasing bubble formation/growing, : interfacial Ⅳ Ⅴ Ⅵ transfer into the gas phase[33] 录用稿件,非最终出版稿
6结论 目前,通过理论计算结合试验,对质子交换膜电解制氢的氢气渗透行为有了较深入的理解,不同 运行参数对氢气渗透的影响规律已取得一定进展,但在相关影响机理方面仍未统一,需后续研究进 一步探索与验证: (1)在质子交换膜电解制氢的常规运行压力范围内(3.5MPa),扩散系数与溶解度主要受温 度影响,压力产生的影响很小,温度升高则渗透率增大: (2)氢气在水中的渗透率约为干膜的5-10倍,但不同相对湿度膜的氢气渗透研究表明,由于 水与聚合物基质的相互作用,中间相与固相可能成为渗透的主体: (3)分压差对氢气渗透的影响表现出线性(渗透池环境)与非线性(电解制氢环境)两种关系, 非线性可能源于膜透水性提升与水通道结构改变引起的对流渗透: (4)氢气渗透率随电流密度升高而增大,氢过饱和是可能的影响机理, 高 电流密度下氢过饱和 度升高,导致通过膜的渗透增加。 参考文献 [1]Grigoriev SA.Fateev VN.Bessarabov D G,et al.Current status, esearch trends,and challenges in water electrolysis science and technology.Int J Hvdrogen Energ,2020,45(49):26036 [2]Lee H,Lee B,Byun M,et al.Economic and environmental analysis of PEM water electrolysis based on replacement moment and renewable electricity resources.Energ Comers Manage,2020,224(15):113477 [3]Kumar S S,Himabindu V.Hydrogen Production by PEM Water Electrolysis-A Review.Mater Sci Tech-lond,2019, 2(3):442 [4]Ayers K.High efficiency PEM water electrolysis:enabled by advanced catalysts,membranes,and processes.CurrOpin Chem Eng,2021,33:100719 [5]Koponen J,Kosonen A,Ruuskanen V,et al.Control and energy efficiency of PEM water electrolyzers in renewable energy systems.IntJ Hydrogen Energ 2017,42(50):29648 16]Suermann M.PatruA.Schmidt High pressure polymer eletrolyte water electrolysis:Test bench development and electrochemical analysisin Hydrogen Energ,2017,42(17):12076 [7]Lee B,Heo J,Kim S,et al.Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations.Energ Comers Manage,2018,162:139 [8]Sartory M,Wallnofer-Ogris E,Salman P,et al.Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar.Int J Hydrogen Energ,2017,42(52):30493 [9]Papakonstantinoy G,Sundmacher K.H2 permeation through N117 and its consumption by IrO,in PEM water electrolyzers.Electrochem Commun,2019,108:106578 [10]Afshari E,Khodabakhsh S,Jahantigh N,et al.Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer.Int J Hydrogen Energ,2021,46(19):11029 [11]Siracusano S,Trocino S,Briguglio N,et al.Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells./Power Sources,2020,468(2):228390 [12]Khatib F N,Wilberforce T,Ijaodola O,et al.Material degradation of components in polymer electrolyte membrane (PEM)electrolytic cell and mitigation mechanisms:A review.Renew Sust Energ Rev,2019,111:1 [13]Frensch S H,Fouda-Onana F,Serre G,et al.Influence of the operation mode on PEM water electrolysis degradation.Int JHydrogen Energ,2019,44(57):29889 [14]Schalenbach M,Tobias H,Paciok P et al.Gas Permeation through Nafion.Part 1:Measurements.J Phys Chem C
6 结论 目前,通过理论计算结合试验,对质子交换膜电解制氢的氢气渗透行为有了较深入的理解,不同 运行参数对氢气渗透的影响规律已取得一定进展,但在相关影响机理方面仍未统一,需后续研究进 一步探索与验证: (1) 在质子交换膜电解制氢的常规运行压力范围内(3.5 MPa),扩散系数与溶解度主要受温 度影响,压力产生的影响很小,温度升高则渗透率增大; (2) 氢气在水中的渗透率约为干膜的 5-10 倍,但不同相对湿度膜的氢气渗透研究表明,由于 水与聚合物基质的相互作用,中间相与固相可能成为渗透的主体; (3) 分压差对氢气渗透的影响表现出线性(渗透池环境)与非线性(电解制氢环境)两种关系, 非线性可能源于膜透水性提升与水通道结构改变引起的对流渗透; (4) 氢气渗透率随电流密度升高而增大,氢过饱和是可能的影响机理,高电流密度下氢过饱和 度升高,导致通过膜的渗透增加。 参 考 文 献 [1] Grigoriev S A, Fateev V N, Bessarabov D G, et al. Current status, research trends, and challenges in water electrolysis science and technology. Int J Hydrogen Energ, 2020, 45(49): 26036 [2] Lee H, Lee B, Byun M, et al. Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources. Energ Convers Manage, 2020, 224(15): 113477 [3] Kumar S S, Himabindu V. Hydrogen Production by PEM Water Electrolysis-A Review. Mater Sci Tech-lond, 2019, 2(3): 442 [4] Ayers K. High efficiency PEM water electrolysis: enabled by advanced catalysts, membranes, and processes. Curr Opin Chem Eng, 2021, 33: 100719 [5] Koponen J, Kosonen A, Ruuskanen V, et al. Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int J Hydrogen Energ, 2017, 42(50): 29648 [6] Suermann M, Patru A, Schmidt T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. Int J Hydrogen Energ, 2017, 42(17): 12076 [7] Lee B, Heo J, Kim S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energ Convers Manage, 2018, 162: 139 [8] Sartory M, Wallnofer-Ogris E, Salman P, et al. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. Int J Hydrogen Energ, 2017, 42(52): 30493 [9] Papakonstantinou G, Sundmacher K. H2 permeation through N117 and its consumption by IrOx in PEM water electrolyzers. Electrochem Commun, 2019, 108: 106578 [10] Afshari E, Khodabakhsh S, Jahantigh N, et al. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. Int J Hydrogen Energ, 2021, 46(19): 11029 [11] Siracusano S, Trocino S, Briguglio N, et al. Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. J Power Sources, 2020, 468(2): 228390 [12] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew Sust Energ Rev, 2019, 111: 1 [13] Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation. Int J Hydrogen Energ, 2019, 44( 57): 29889 [14] Schalenbach M, Tobias H, Paciok P, et al. Gas Permeation through Nafion. Part 1: Measurements. J Phys Chem C, 录用稿件,非最终出版稿
2015,119(45):25145 [15]Ito H,Maeda T,Nakano A,et al.Properties of Nafion membranes under PEM water electrolysis conditions.IntJ drogen Energ,2011,36(17):10527 [16]Battino R,Clever HL.The solubility of gases in liquids.Chem Rev,1966,66:395 [17]Mann R F,Amphlett JC,Peppley BA,et al.Henry's Law and the solubilities of reactant gases in the modelling of PEM fuel cells.J Power Sources,2006,161(2):768 [18]Wise D L,Houghton G.The diffusion coefficients of ten slightly soluble gases in water at 10-60 C.Chem Eng Sci. 1966,21(11:999 [19]Sakai T,Takenaka H,Wakabayashi N,et al.Gas Permeation Properties of Solid Polymer Electrolyte(SPE)Membranes. J Electrochem Soc.1985.132(6):1328 [20]Yoshitake M,Tamura M,Yoshida N,et al.Studies of Perfluorinated Ion Exchange Membranes for Polymer Electrolyte Fuel Cells.Denki Kagaku,1996,64(6):727 [21]Kocha S S,Yang J D,Yi J S.Characterization of gas crossover and its implications in PEM fue cells.Aiche J,2006. 52(5):1916 [22]Broka K,Ekdunge PJ.Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell.J App/Electrochem,1997,27(2):117 [23]Barbir F.PEM electrolysis for production of hydrogen from renewable energy sources.Sol Energy,2005,78:661 [24]Sakai T,Takenaka H,Torikai E.Gas Diffusion in the Dried and Hydrated Nafions.JElectrochem Soc,198,133(1):88 [25]Chiou JS,Paul DR.Gas permeation in a dry Nafion membrane.VndEng Chem Res,1988,27(11):2161 [26]Mohamed H F M,Ito K,Kobayashi Y,et al.Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells.Polymer,2008,49(13-14):3091 [27]Schalenbach M,Michael A H,JeffT G,et al.Gas Permeation through Nafion.Part2:Resistor Network Model./Phys Chem C.2015.119(45):25156 [28]Trinke P,Bensmann B,Reichstein S,et al.Hydrogen Permeation in PEM Electrolyzer Cells Operated at Asymmetric Pressure Conditions.J Electrochem Soc.2016.163(11):F3164 [29]Fales JL,Vanderborgh N E,Stroeve P.The influence of channel geometry on ionic transport /Proceedings of the Symposium on Diaphragms.Separators,and lon-Exchange Membranes,1986:13 [30]Sellin R C.Mozet K.Menage A.et al Measuring electro-osmotic drag coefficients in PFSA membranes without any diffusion assumption.IntJHydrogen Energ,2019,44(45)24905 [31]Wakita H,Kawabata N,Kani Measurement of water permeation through membranes from extremely high hydraulic pressure to atmospheric pfessure.IntJ Hydrogen Energ,2019,44(59):31257 [32]Shin H S,Oh B S.Water transport according to temperature and current in PEM water electrolyzer.IntJ Hydrogen Energ,2019,45(1)s6 [33]Trinke P Bensmann B,Hanke-Rauschenbach R.Current density effect on hydrogen permeation in PEM water electrolyzers.Im JHydrogen Energ,2017,42(21):14355 [34]Schalenbach M.Erratum:pressurized PEM water electrolysis:efficiency and gas crossover.Int J Hydrogen Energ, 2013,38(35):14921.IntJ Hydrogen Energ,2016,41(1)729 [35]Grigoriev SA,Millet P,Korobtsev S V,et al.Hydrogen safety aspects related to highpressure polymer electrolyte membrane water electrolysis.IntJ Hydrogen Energ,2009,34(14):5986 [36]Ito H,Miyazaki N,Ishida M,et al.Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis.Int J Hydrogen Energ,2016,41(45):20439 [37]Han B,Mo J K,Kang Z Y,et al.Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells.Electrochimi Acta,2016,188:317 38]Bromberger K,Ghinaiya J,Lickert T,et al.Hydraulic ex situ through-plane characterization of porous transport layers
2015, 119(45): 25145 [15] Ito H, Maeda T, Nakano A, et al. Properties of Nafion membranes under PEM water electrolysis conditions. Int J Hydrogen Energ, 2011, 36(17): 10527 [16] Battino R, Clever H L. The solubility of gases in liquids. Chem Rev, 1966, 66: 395 [17] Mann R F, Amphlett J C, Peppley B A, et al. Henry's Law and the solubilities of reactant gases in the modelling of PEM fuel cells. J Power Sources, 2006, 161(2): 768 [18] Wise D L, Houghton G. The diffusion coefficients of ten slightly soluble gases in water at 10-60 °C. Chem Eng Sci, 1966, 21(11): 999 [19] Sakai T, Takenaka H, Wakabayashi N, et al. Gas Permeation Properties of Solid Polymer Electrolyte (SPE) Membranes. J Electrochem Soc, 1985, 132(6): 1328 [20] Yoshitake M, Tamura M, Yoshida N, et al. Studies of Perfluorinated Ion Exchange Membranes for Polymer Electrolyte Fuel Cells. Denki Kagaku, 1996, 64(6): 727 [21] Kocha S S, Yang J D, Yi J S. Characterization of gas crossover and its implications in PEM fuel cells. Aiche J, 2006, 52(5): 1916 [22] Broka K, Ekdunge P J. Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell. J Appl Electrochem, 1997, 27(2): 117 [23] Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy, 2005, 78: 661 [24] Sakai T, Takenaka H, Torikai E. Gas Diffusion in the Dried and Hydrated Nafions. J Electrochem Soc, 1986, 133(1): 88 [25] Chiou J S, Paul D R. Gas permeation in a dry Nafion membrane. Ind Eng Chem Res, 1988, 27(11): 2161 [26] Mohamed H F M, Ito K, Kobayashi Y, et al. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells. Polymer, 2008, 49(13-14): 3091 [27] Schalenbach M, Michael A H, Jeff T G, et al. Gas Permeation through Nafion. Part2: Resistor Network Model. J Phys Chem C, 2015, 119(45): 25156 [28] Trinke P, Bensmann B, Reichstein S, et al. Hydrogen Permeation in PEM Electrolyzer Cells Operated at Asymmetric Pressure Conditions. J Electrochem Soc, 2016, 163(11): F3164 [29] Fales J L, Vanderborgh N E, Stroeve P. The influence of channel geometry on ionic transport // Proceedings of the Symposium on Diaphragms, Separators, and Ion-Exchange Membranes, 1986: 13 [30] Sellin R C ,Mozet K ,Ménage A, et al. Measuring electro-osmotic drag coefficients in PFSA membranes without any diffusion assumption. Int J Hydrogen Energ, 2019, 44(45): 24905 [31] Wakita H, Kawabata N, Kani Y. Measurement of water permeation through membranes from extremely high hydraulic pressure to atmospheric pressure. Int J Hydrogen Energ, 2019, 44(59): 31257 [32] Shin H S, Oh B S. Water transport according to temperature and current in PEM water electrolyzer. Int J Hydrogen Energ, 2019, 45(1): 56 [33] Trinke P, Bensmann B, Hanke-Rauschenbach R. Current density effect on hydrogen permeation in PEM water electrolyzers. Int J Hydrogen Energ, 2017, 42(21): 14355 [34] Schalenbach M. Erratum: pressurized PEM water electrolysis: efficiency and gas crossover. Int J Hydrogen Energ, 2013, 38(35): 14921. Int J Hydrogen Energ, 2016, 41(1): 729 [35] Grigoriev S A, Millet P, Korobtsev S V, et al. Hydrogen safety aspects related to highpressure polymer electrolyte membrane water electrolysis. Int J Hydrogen Energ, 2009, 34(14): 5986 [36] Ito H, Miyazaki N, Ishida M, et al. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis. Int J Hydrogen Energ, 2016, 41(45): 20439 [37] Han B, Mo J K, Kang Z Y, et al. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimi Acta, 2016, 188: 317 [38] Bromberger K, Ghinaiya J, Lickert T, et al. Hydraulic ex situ through-plane characterization of porous transport layers 录用稿件,非最终出版稿