《工程科学学报》录用稿,htps:/doi.org/10.13374/i,issn2095-9389.2021.09.12.001©北京科技大学2020 工程科学学报DO: 利用双氧水为还原剂湿法浸出电解锰阳极泥中锰的研究 赵俊杰”,蔡林宏”,舒建成☒,曹静”,杨勇),陈梦君” 1)西南科技大学固体废物处理与资源化教有部重点实验室,四川绵阳621000 2)南方锰业集团有限责任公司大新锰矿分公司,广西南宁532315 3)重庆大学化学化工学院,重庆,401331 ☒通信作者,E-mail:shujc@swust..edu.cn 摘要:锰是我国重要的战略资源之一,素有“无锰不成钢之说。电解锰阳极泥是生产电解金偏时阳极产生的一种 固体废物,其中含有大量锰、铅等资源。如何清洁高效浸出电解锰阳极泥中的锰是实现其资源化利用的关键,本研 究提出了一种HSO4-HO2浸出体系强化电解锰阳极泥中锰浸出的新方法,研究了Q2和HSO,用量、反应温度、反 应时间以及固液比对电解锰阳极泥中锰浸出率的影响。研究结果表明,在阳极泥专Q2质量比1:0.8、阳极泥与 H,02质量比1:0.9、反应温度45℃、固液质量比1:10条件下浸出反应15m,锰的浸出率可达97.23%,浸出渣 中Pb含量高达53.71%。浸出机理分析表明,酸性条件下电解锰阳极泥中锰化物被HO2还原浸出,浸出液中M 主要以MSO:物相存在,浸出渣中Pb主要以PbSO:富集。本研究结果为电解锰阳极泥的资源化利用提供了一种新 思路。 关键词:电解锰阳极泥:浸出率:HO2:铅:浸出机理 分类号TF803.2 Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent ZHAO Jun-jie CAl Lin-hong SHU Jian-cheng CAO Jing",YANG Yong23.CHEN Meng-jun 1)Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education,Southwest University of science and technology 621000. Sichuan,China 2)Daxin Manganese Mining Brar se Group Limited,Chongzuo,Guangxi 532315,China 3)School of Chemistry and chem ing,Chongqing University,Chongqing 400030,China Corresponding author,E-mai swust.edu.cn ABSTRACT:Manganese is one of the important strategic resources in China,and there is a saying that "no manganese. no steel".In 2020.China's output of electrolytic metal manganese was 1,501,300 tons,accounting for 96.5%of the world's total oufput.At present,manganese metal is mainly obtained by electrodeposition process.Electrolytic manganese anode slime(EMAS)is a kind of solid waste produced in the production of electrolytic metal manganese,which contains a large amount of manganese,lead and other resources.60,000-180,000 tons of EMAS will be discharged in China every year,and direct discharge will cause serious environmental pollution.How to clean and efficiently leaching Mn from EMAS is the key to realize its resource utilization.A large number of studies can achieve efficient leaching of manganese 1收稿日期:2021-11-22 基金项目:广西壮族自治区重点研发计划桂科(AB18126088),广西壮族自治区创新驱动发展专项(桂科 AA19182015),国家自然科学基金(52174386,21806132)
工程科学学报 DOI: 利用双氧水为还原剂湿法浸出电解锰阳极泥中锰的研究 赵俊杰 1),蔡林宏 1),舒建成 1),曹静 1),杨勇 2,3),陈梦君 1) 1) 西南科技大学固体废物处理与资源化教育部重点实验室,四川绵阳 621000 2) 南方锰业集团有限责任公司大新锰矿分公司,广西南宁 532315 3) 重庆大学化学化工学院,重庆,401331 通信作者,E-mail:shujc@swust.edu.cn 摘 要:锰是我国重要的战略资源之一,素有“无锰不成钢”之说。电解锰阳极泥是生产电解金属锰时阳极产生的一种 固体废物,其中含有大量锰、铅等资源。如何清洁高效浸出电解锰阳极泥中的锰是实现其资源化利用的关键,本研 究提出了一种 H2SO4-H2O2浸出体系强化电解锰阳极泥中锰浸出的新方法,研究了 H2O2和 H2SO4用量、反应温度、反 应时间以及固液比对电解锰阳极泥中锰浸出率的影响。研究结果表明,在阳极泥与 H2O2质量比 1:0.8、阳极泥与 H2O2质量比 1:0.9、反应温度 45 ℃、固液质量比 1:10 条件下浸出反应 15 min,锰的浸出率可达 97.23 %,浸出渣 中 Pb 含量高达 53.71 %。浸出机理分析表明,酸性条件下电解锰阳极泥中锰氧化物被 H2O2还原浸出,浸出液中 Mn 主要以 MnSO4物相存在,浸出渣中 Pb 主要以 PbSO4富集。本研究结果为电解锰阳极泥的资源化利用提供了一种新 思路。 关键词:电解锰阳极泥;浸出率;H2O2;铅;浸出机理 分类号 TF803.2 Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent ZHAO Jun-jie1), CAI Lin-hong1), SHU Jian-cheng1), CAO Jing1), YANG Yong2,3), CHEN Meng-jun1) 1) Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of science and technology 621000, Sichuan, China 2) Daxin Manganese Mining Branch of South Manganese Group Limited, Chongzuo,Guangxi 532315,China 3) School of Chemistry and chemical engineering, Chongqing University, Chongqing 400030, China Corresponding author, E-mail:shujc@swust.edu.cn ABSTRACT: Manganese is one of the important strategic resources in China , and there is a saying that "no manganese, no steel". In 2020, China's output of electrolytic metal manganese was 1,501,300 tons, accounting for 96.5% of the world's total output. At present, manganese metal is mainly obtained by electrodeposition process. Electrolytic manganese anode slime (EMAS) is a kind of solid waste produced in the production of electrolytic metal manganese, which contains a large amount of manganese, lead and other resources. 60,000-180,000 tons of EMAS will be discharged in China every year, and direct discharge will cause serious environmental pollution. How to clean and efficiently leaching Mn from EMAS is the key to realize its resource utilization. A large number of studies can achieve efficient leaching of manganese 1收稿日期:2021-11-22 基金项目:广西壮族自治区重点研发计划桂科(AB18126088),广西壮族自治区创新驱动发展专项(桂科 AA19182015),国家自然科学基金(52174386,21806132)。 《工程科学学报》录用稿,https://doi.org/10.13374/j.issn2095-9389.2021.09.12.001 ©北京科技大学 2020 录用稿件,非最终出版稿
from EMAS,but there are many problems such as complicated process,high leaching cost,large amount of reducing agent,residual organic matter in leaching solution.Therefore,it is urgent to find a new method for efficient clean leaching of manganese from EMAS.In this study,a new method of enhancing manganese leaching from EMAS with H:SO-H2O leaching system was proposed.The effects of the dosage of H2SO and H2O2,reaction temperature,reaction time and solid-liquid ratio on the leaching efficiency of manganese from EMAS were studied.The results shown that the leaching efficiency of manganese was 97.23 and the content of Pb in the leaching residue was 53.71 %when the mass ratio of EMAS to HO:was 1:0.8,the mass ratio of EMAS to H2SO was 1:0.9,the leaching temperature was 45 C,the solid- liquid mass ratio was 1:10 and the leaching time was 15 min.Leaching mechanism analysis showed that manganese oxide in EMAS was reduced leaching by H2O2 under acidic condition,and Mn mainly exists in the leaching solution as MnSO4, as well as Pb in leaching residue is mainly enriched with PbSO.This study provided a new idea for resource utilization of EMAS KEY WORDS:Electrolytic manganese anode slime:leaching efficiency:H2O2:Pb:Leaching 电解金属锰是工业生产的重要原料,其广泛应用于现代工业的各个领域,在国民经济建设中 具有十分重要的战略地位四。2020年,中国电解金属锰占全球电解金属锰产量的96.5%四。电解锰阳 极泥是电解金属锰生产过程中阳极室产生的副产物),主要成分为MO2(Y、B、ε)、PbSO,以及可 溶性硫酸盐,其中锰和铅含量分别高达55.0%和5.0%以上。目前钱国每生产1吨电解金属锰将产 生40kg~l20kg电解锰阳极泥oRefenced,每年排放~18万吨电解锰阳极泥。电解锰阳极泥 中含有大量锰、铅等重金属,直接排放将造成严重的环污染。一 目前,许多学者对电解锰阳极泥的资源化利用开展了发量研究工作61川。例如,杨欢四、黄良取 等将脱铅后的电解锰阳极泥用于制备锰酸锂电池刘盈等o:Reference oond将电解锰阳极泥经高 温焙烧后,再采用醋酸铵溶液浸出铅,铅的浸出率达90%:粟海锋等5,从电解锰阳极泥中回 收硒。此外,研究者采用不同还原剂浸出电解猛阳极泥中的锰,例如,王雨红等mor:Referenee soure not found 以蔗髓和铁粉作为还原剂,锰的浸出奉可达99.31%:黎应芬等采用硫磺o Reference soure no ound、FeS,Emor Reference found作为还原剂,锰的浸出率可达90%以上;刘贵扬等o Referncefoud采 用玉米杆、木薯淀粉、甘蔗渣和废糖蜜4种有机物浸出电解锰阳极泥,锰的浸出率可达97.01%。上 述这些方法都能实现电解锰阳极泥中錳的高效浸出,但存在工艺复杂、浸出成本高、还原剂用量大、 浸出液中残留有机物等问题。为此, 急需寻找一种能够实现电解锰渣阳极泥中锰高效清洁浸出的新 方法。 双氧水(H,02)作为父种得洁高效的浸出剂,在特定条件下具有不同的氧化性和还原性,其 被广泛应用在医学、化江、民用等行业。目前大量研究者已证实利用不同H,O2体系可实现矿物的高 效浸出。例如,采用O2-Ee(SO4)3-H2SO,体系浸出辉铜矿Eor Refeenesoue ot foud、NH,HSO4-H2O2体系 浸出低品位锰矿石ac金ce soure ound、HSO-H,O,体系浸出废弃磷酸铁锂mReeoed、H,O2- H2SO,体系浸出非洲氧化铜钴矿Eror Referenee oue not found。另外,M.Esmaeili等n:Reference source no found研究了 超声辅助有机酸和H,O2从废旧锂离子电池中提取Li和Co,Li和Co的回收率达100%:周杰等mo Refereneeo foud在酸性条件下,利用HO2的还原性将氧化锰矿中锰还原为二价锰,锰的浸出率达 84.72%。为此,利用HO2作为还原剂湿法浸出电解锰阳极泥中锰在理论上是可行的。 本文研究了HO2和HSO,用量、浸出温度、浸出时间、固液比对电解锰阳极泥中锰浸出率的影 响规律,结合XRD、XRF、SEM和FTIR等现代测试手段,揭示了HSO,-HO2体系强化电解锰阳极 泥中锰的浸出机理。本文研究结果为电解锰阳极泥的资源化利用提供了一种新思路。 1实验部分 1.1实验材料
from EMAS, but there are many problems such as complicated process, high leaching cost, large amount of reducing agent, residual organic matter in leaching solution. Therefore, it is urgent to find a new method for efficient clean leaching of manganese from EMAS. In this study, a new method of enhancing manganese leaching from EMAS with H2SO4-H2O2 leaching system was proposed. The effects of the dosage of H2SO4 and H2O2, reaction temperature, reaction time and solid-liquid ratio on the leaching efficiency of manganese from EMAS were studied. The results shown that the leaching efficiency of manganese was 97.23 % and the content of Pb in the leaching residue was 53.71 %, when the mass ratio of EMAS to H2O2 was 1:0.8, the mass ratio of EMAS to H2SO4 was 1:0.9, the leaching temperature was 45 , the solid- ℃ liquid mass ratio was 1:10 and the leaching time was 15 min. Leaching mechanism analysis showed that manganese oxide in EMAS was reduced leaching by H2O2 under acidic condition, and Mn mainly exists in the leaching solution as MnSO4, as well as Pb in leaching residue is mainly enriched with PbSO4. This study provided a new idea for resource utilization of EMAS. KEY WORDS: Electrolytic manganese anode slime; leaching efficiency; H2O2; Pb; Leaching mechanism 电解金属锰是工业生产的重要原料,其广泛应用于现代工业的各个领域,在国民经济建设中 具有十分重要的战略地位[1]。2020 年,中国电解金属锰占全球电解金属锰产量的 96.5 %[2]。电解锰阳 极泥是电解金属锰生产过程中阳极室产生的副产物[3],主要成分为 MnO2(γ、β、ε)、PbSO4以及可 溶性硫酸盐[4],其中锰和铅含量分别高达 55.0 %和 5.0 %以上。目前我国每生产 1 吨电解金属锰将产 生 40 kg~120 kg 电解锰阳极泥Error: Reference source not found,每年排放 6~18 万吨电解锰阳极泥。电解锰阳极泥 中含有大量锰、铅等重金属,直接排放将造成严重的环境污染。 目前,许多学者对电解锰阳极泥的资源化利用开展了大量研究工作[6-11]。例如,杨欢[12]、黄良取 [11]等将脱铅后的电解锰阳极泥用于制备锰酸锂电池;刘璐等Error: Reference source not found将电解锰阳极泥经高 温焙烧后,再采用醋酸铵溶液浸出铅,铅的浸出率可达 90 %;粟海锋等[15,16]从电解锰阳极泥中回 收硒。此外,研究者采用不同还原剂浸出电解锰阳极泥中的锰,例如,王雨红等Error: Reference source not found 以蔗髓和铁粉作为还原剂,锰的浸出率可达 99.31 % ;黎应芬等采用硫磺 Error: Reference source not found、FeS2 Error: Reference source not found作为还原剂,锰的浸出率可达 90 %以上;刘贵扬等Error: Reference source not found采 用玉米杆、木薯淀粉、甘蔗渣和废糖蜜 4 种有机物浸出电解锰阳极泥,锰的浸出率可达 97.01 %。上 述这些方法都能实现电解锰阳极泥中锰的高效浸出,但存在工艺复杂、浸出成本高、还原剂用量大、 浸出液中残留有机物等问题。为此,急需寻找一种能够实现电解锰渣阳极泥中锰高效清洁浸出的新 方法。 双氧水(H2O2)作为一种清洁高效的浸出剂,在特定条件下具有不同的氧化性和还原性,其 被广泛应用在医学、化工、民用等行业。目前大量研究者已证实利用不同 H2O2体系可实现矿物的高 效浸出。例如,采用 H2O2-Fe2(SO4)3-H2SO4体系浸出辉铜矿Error: Reference source not found、NH4HSO4-H2O2体系 浸出低品位锰矿石Error: Reference source not found、H2SO4-H2O2体系浸出废弃磷酸铁锂Error: Reference source not found、H2O2- H2SO4体系浸出非洲氧化铜钴矿Error: Reference source not found。另外,M. Esmaeili 等Error: Reference source not found研究了 超声辅助有机酸和 H2O2从废旧锂离子电池中提取 Li 和 Co,Li 和 Co 的回收率达 100%;周杰等Error: Reference source not found 在酸性条件下,利用 H2O2的还原性将氧化锰矿中锰还原为二价锰,锰的浸出率达 84.72 %。为此,利用 H2O2作为还原剂湿法浸出电解锰阳极泥中锰在理论上是可行的。 本文研究了 H2O2和 H2SO4用量、浸出温度、浸出时间、固液比对电解锰阳极泥中锰浸出率的影 响规律,结合 XRD、XRF、SEM 和 FTIR 等现代测试手段,揭示了 H2SO4-H2O2体系强化电解锰阳极 泥中锰的浸出机理。本文研究结果为电解锰阳极泥的资源化利用提供了一种新思路。 1 实验部分 1.1 实验材料 录用稿件,非最终出版稿
第3x卷第00期 环境科学 本实验样品取自广西某电解锰厂压滤车间新排放的电解锰阳极泥,样品首先在60~80℃下烘 干至恒重,再经破碎、球磨至粒度≤0.15m,处理后的样品置于干燥器中备用。实验过程使用的 H2S04(98.3%)和H2O2(30%)等药品均为分析纯,且由绵阳信捷贸易公司提供。去离子水由净 水系统(HMC-WS10)提供。 1.2实验方法 本研究采用烧杯作为反应容器。实验过程首先将电解锰阳极泥与蒸馏水按照不同固液比(1: 5~1:15)进行充分混合,随后再依次加入不同浓度的HSO:和HO2,在设定的反应温度和反应时 间条件下进行反应,反应结束后进行固液分离。其中,上述反应过程中电解锰阳极泥与H$O的质 量比为1:0.6~1:1.0,电解锰阳极泥与H202的质量比为1:0.5~1:1.0,反应温度范围20-50 C,反应时间5min~120min。锰的浸出率按如下公式计算: 7= W×100% (1) 式中:”一锰浸出率,%: W一处理后电解锰阳极泥中锰的含量,mg: W-原电解锰阳极泥中锰的总含量,mg。 1.3分析方法 锰离子浓度采用高碘酸钾分光光度法(GB11906-89)测定样品物相组成测定采用X射线衍射 仪分析(XRD,SHIMADZU,XRD-6O00,日本),仪器工作条件Cu靶Ka辐射源,管压4OkV, 管流40mA,扫描范围(20)为5°90°,步长为0.02/s(样品化学成分测定采用Axos型X射线荧 光光谱仪分析(生产厂家:荷兰帕纳科有限公司,仪器上作条件:Rh靶,陶瓷X射线,最大功率 2.4kW,测角仪扫描模式/20模式,含量范围为006Q00%)。样品微观形貌和表面元素分布测 定采用扫描电子显微镜(SEM:S4800:HITACHⅢ,人本)和X射线光谱系统(EDS:IGMA+X- Mx20,蔡司,德国)分析,观测电压1kV样品分子结构和化学基团测定采用日本岛津制作所 IRPRESTIGE-21型傅里叶变换红外光谱仪分析,光度范围为4000cm'~750cm'。 2结果与分析 2.1H202用对浸出率的响 由图1可知,随着电解锰阳极泥与HO2质量比的增加,锰的浸出率逐渐升高。当电解锰阳极泥 与H02质量比从1:0.5增加到:08,锰的浸出率从25.65%提高到97.32%:当电解锰阳极泥与 HO2质量比超过1:0.8人复⊕率基本保持稳定,这是因为此时浸出体系中的HO2已过量,再增 加HO2用量对锰的浸出率影响不大。此外,浸出液pH随H,O2用量增加呈现先增加后减小的趋势, 这是由于酸性条件养MmO2的氧化性比HO2强,随着HO2用量的增加MO2被快速还原成 MSO4,此时溶液中的H快速消耗,导致浸出液pH升高,而随着HO2浓度持续增加,体系中过 量的H,O2会分解产生大量H2o,从而降低了浸出液pH。因此,综合考虑HO,用量与锰浸出率的 关系,本研究选取阳极泥与HO2的最佳质量比为1:0.8
第 3x 卷第 00 期 环境科学 本实验样品取自广西某电解锰厂压滤车间新排放的电解锰阳极泥,样品首先在 60~80 ℃下烘 干至恒重,再经破碎、球磨至粒度≤0.15 mm,处理后的样品置于干燥器中备用。实验过程使用的 H2SO4(98.3 %)和 H2O2(30 %)等药品均为分析纯,且由绵阳信捷贸易公司提供。去离子水由净 水系统(HMC-WS10)提供。 1.2 实验方法 本研究采用烧杯作为反应容器。实验过程首先将电解锰阳极泥与蒸馏水按照不同固液比(1: 5~1:15)进行充分混合,随后再依次加入不同浓度的 H2SO4和 H2O2,在设定的反应温度和反应时 间条件下进行反应,反应结束后进行固液分离。其中,上述反应过程中电解锰阳极泥与 H2SO4的质 量比为 1:0.6~1:1.0,电解锰阳极泥与 H2O2 的质量比为 1:0.5~1:1.0,反应温度范围 20~50 ℃,反应时间 5 min~120 min。锰的浸出率按如下公式计算: 0 100% W W (1) 式中: —锰浸出率,%; W0—处理后电解锰阳极泥中锰的含量,mg; W—原电解锰阳极泥中锰的总含量,mg。 1.3 分析方法 锰离子浓度采用高碘酸钾分光光度法(GB11906-89)测定。样品物相组成测定采用 X 射线衍射 仪分析(XRD; SHIMADZU,XRD-6000,日本),仪器工作条件:Cu 靶 Kα 辐射源,管压 40kV, 管流 40mA,扫描范围(2θ)为 5°~90°,步长为 0.02°/s。样品化学成分测定采用 Axios 型 X 射线荧 光光谱仪分析(生产厂家:荷兰帕纳科有限公司,仪器工作条件:Rh 靶,陶瓷 X 射线,最大功率 2.4kW,测角仪扫描模式 θ/2θ 模式,含量范围为 0.01%~100%)。样品微观形貌和表面元素分布测 定采用扫描电子显微镜(SEM;S4800;HITACHI,日本)和 X 射线光谱系统(EDS;ΣIGMA+ XMax20,蔡司,德国)分析,观测电压 1kV。样品分子结构和化学基团测定采用日本岛津制作所 IRPRESTIGE-21 型傅里叶变换红外光谱仪分析,光度范围为 4000cm-1~750cm-1。 2 结果与分析 2.1 H2O2用量对锰浸出率的影响 由图 1 可知,随着电解锰阳极泥与 H2O2质量比的增加,锰的浸出率逐渐升高。当电解锰阳极泥 与 H2O2质量比从 1:0.5 增加到 1:0.8,锰的浸出率从 25.65 %提高到 97.32 %;当电解锰阳极泥与 H2O2质量比超过 1:0.8,锰浸出率基本保持稳定,这是因为此时浸出体系中的 H2O2已过量,再增 加 H2O2用量对锰的浸出率影响不大。此外,浸出液 pH 随 H2O2用量增加呈现先增加后减小的趋势, 这是由于酸性条件下 MnO2 的氧化性比 H2O2 强,随着 H2O2 用量的增加 MnO2 被快速还原成 MnSO4,此时溶液中的 H +快速消耗,导致浸出液 pH 升高,而随着 H2O2浓度持续增加,体系中过 量的 H2O2会分解产生大量 H + [20],从而降低了浸出液 pH。因此,综合考虑 H2O2用量与锰浸出率的 关系,本研究选录用稿件,非最终出版稿 取阳极泥与 H2O2的最佳质量比为 1:0.8
ing efficiency of manganese Fig.1 Effect of the mass ratio of EMAS to H2O:on the leaching efficiency manganese in EMAS (The solid-liquid mass ratio was 1:10.the mass ratio of EMAS and HSO,was 1:0.9,the leaghing f erature was 45 C and the leaching time was 60 min) 图1电解锰阳极泥与H2O2质量比对锰浸出率的影响 (固液比1:10,电解锰阳极泥与HS0,质量比1:0.9,浸出温度45C,浸出时间60min) 2.2HS0,浓度和反应温度对出率的形响 由图2可知,当电解锰阳极泥与HS0质量比从1:0.6增加到1入0.8,锰的浸出率从2.31% 增加到21.29%,浸出液pH无明显变化:当电解锰阳极泥与HSQ的质量比从1:0.8增加到1: 0.9,锰的浸出率从21.29%增加到97.23%,浸出液pH从4.87下降到0.87:然而当电解锰阳极泥 与HSO,质量比增加到1:1,锰的浸出率基本保持不变→送是因为当电解锰阳极泥与HSO,质量比 低于1:0.8时,体系H浓度较低,HO2未体现其强原性,电解锰阳极泥中高价态锰不能被还原 浸出:而当电解锰阳极泥与HS0,质量比大于乒08体系中H浓度增加,H,02体现出了强还 原性,实现了电解锰阳极泥中高价锰的还原浸出阿!为此,本研究选取电解锰阳极泥与HSO,质量 比为1:0.9作为最佳条件。由图3可知,当反@温度从15℃增加到50℃,锰的浸出率增加缓慢: 同时当反应温度超过50℃时,HO2容易分解。因此,考虑到能耗以及H02的分解率,本研究选取 45℃为最佳浸出温度。 录用稿 Fig.2 Effect of the mass ratio of EMAS to H,SO.on the manganese leaching efficiency in EMAS (The solid-liquid mass ratio was 1:10,the mass ratio of EMAS to H2O was 1:0.8,the leaching temperature was 45 C and the leaching time was 60 min) 图2电解锰阳极泥与HSO,质量比对阳极泥中锰浸出率的影响 (固液比1:10,电解锰阳极泥与HO2质量为1:0.8,浸出温度45℃,浸出时间60min)
Fig. 1 Effect of the mass ratio of EMAS to H2O2 on the leaching efficiency manganese in EMAS (The solid-liquid mass ratio was 1:10, the mass ratio of EMAS and H2SO4 was 1:0.9, the leaching temperature was 45 ℃ and the leaching time was 60 min) 图 1 电解锰阳极泥与 H2O2质量比对锰浸出率的影响 (固液比 1:10,电解锰阳极泥与 H2SO4质量比 1:0.9,浸出温度 45 ℃,浸出时间 60 min) 2.2 H2SO4浓度和反应温度对锰浸出率的影响 由图 2 可知,当电解锰阳极泥与 H2SO4质量比从 1:0.6 增加到 1:0.8,锰的浸出率从 2.31 % 增加到 21.29 %,浸出液 pH 无明显变化;当电解锰阳极泥与 H2SO4的质量比从 1:0.8 增加到 1: 0.9,锰的浸出率从 21.29 %增加到 97.23 %,浸出液 pH 从 4.87 下降到 0.87;然而当电解锰阳极泥 与 H2SO4质量比增加到 1:1,锰的浸出率基本保持不变。这是因为当电解锰阳极泥与 H2SO4质量比 低于 1:0.8 时,体系 H +浓度较低,H2O2未体现其强还原性,电解锰阳极泥中高价态锰不能被还原 浸出;而当电解锰阳极泥与 H2SO4质量比大于 1:0.8 时,体系中 H +浓度增加,H2O2体现出了强还 原性,实现了电解锰阳极泥中高价锰的还原浸出[27]。为此,本研究选取电解锰阳极泥与 H2SO4质量 比为 1:0.9 作为最佳条件。由图 3 可知,当反应温度从 15 ℃增加到 50 ℃,锰的浸出率增加缓慢; 同时当反应温度超过 50 ℃时,H2O2容易分解。因此,考虑到能耗以及 H2O2的分解率,本研究选取 45 ℃为最佳浸出温度。 Fig. 2 Effect of the mass ratio of EMAS to H2SO4 on the manganese leaching efficiency in EMAS (The solid-liquid mass ratio was 1:10, the mass ratio of EMAS to H2O2 was 1:0.8, the leaching temperature was 45 ℃ and the leaching time was 60 min) 图 2 电解锰阳极泥与 H2SO4质量比对阳极泥中锰浸出率的影响 (固液比 1:10,电解锰阳极泥与 H2O2质量为 1:0.8,浸出温度 45 ℃,浸出时间 60 min) 录用稿件,非最终出版稿
第3x卷第00期 环境科学 efficiency of mangar Fig.3 Effect of reaction temperature on the leaching efficiency mangai (The solid-liquid mass ratio was 1:10,the mass ratio of EMAS to H2SO.was 1:0. ratio of EMAS to H2O was 1:0.8 and the leaching time was 60 min) 图3反应温度对阳极泥中锰浸出率的影响 (固液比1:10,电解锰阳极泥与HS0:质量比1:0.9,电解锰阳极泥与62质量比1:0.8,浸出时间60min) 2.3固液比和反应时间对量漫出率的形响 由图4可知,当固液比从1:5增加到1:10,锰浸出率从96.20%增加到98.51%,继续增加 固液比,锰的浸出率变化不大。这是因为随着电解锰渣阳极泥固体颗粒含量的增加,悬浮液粘度和 矿浆团聚度增加,降低了外部扩散速度以及矿物颗粒表面的反应速率:此外,过高的固液比, 会产生大量浸出液,增加后续水处理成本。由图5可当反应时间从5min增加到l5min,锰浸出 率从91.33%提升到97.48%,同时浸出液p从026提高到1.24:而继续增加反应时间对锰的浸出 率影响不大。因此,本研究选取固液比为1:0拟及浸出时间为15m作为最佳浸出条件。 录用稿件 Fig.4 Effect of solid-liquid mass ratio on the manganese leaching efficiency in EMAS (The mass ratio of EMAS to H2SO was 1:0.9,the mass ratio of EMAS to H2O was 1:0.8,the leaching temperature was 45 C and the leaching time was 60 min) 图4固液比对阳极泥中锰浸出率的影响 (电解锰阳极泥与HSO4质量1:0.9,电解锰阳极泥与HO2质量比1:0.8,浸出温度45C,浸出时间60min)
第 3x 卷第 00 期 环境科学 Fig. 3 Effect of reaction temperature on the leaching efficiency manganese in EMAS (The solid-liquid mass ratio was 1:10, the mass ratio of EMAS to H2SO4 was 1:0.9,the mass ratio of EMAS to H2O2 was 1:0.8 and the leaching time was 60 min) 图 3 反应温度对阳极泥中锰浸出率的影响 (固液比 1:10,电解锰阳极泥与 H2SO4质量比 1:0.9,电解锰阳极泥与 H2O2质量比 1:0.8,浸出时间 60 min) 2.3 固液比和反应时间对锰浸出率的影响 由图 4 可知,当固液比从 1:5 增加到 1:10,锰浸出率从 96.20 %增加到 98.51 %,继续增加 固液比,锰的浸出率变化不大。这是因为随着电解锰渣阳极泥固体颗粒含量的增加,悬浮液粘度和 矿浆团聚度增加,降低了外部扩散速度以及矿物颗粒表面的反应速率[28];此外,过高的固液比, 会产生大量浸出液,增加后续水处理成本。由图 5 可知,当反应时间从 5min 增加到 15 min,锰浸出 率从 91.33 %提升到 97.48 %,同时浸出液 pH 从 0.26 提高到 1.24;而继续增加反应时间对锰的浸出 率影响不大。因此,本研究选取固液比为 1:10 以及浸出时间为 15 min 作为最佳浸出条件。 Fig. 4 Effect of solid-liquid mass ratio on the manganese leaching efficiency in EMAS (The mass ratio of EMAS to H2SO4 was 1:0.9, the mass ratio of EMAS to H2O2 was 1:0.8, the leaching temperature was 45 ℃ and the leaching time was 60 min) 图 4 固液比对阳极泥中锰浸出率的影响 (电解锰阳极泥与 H2SO4质量 1:0.9,电解锰阳极泥与 H2O2质量比 1:0.8,浸出温度 45 ℃,浸出时间 60 min) 录用稿件,非最终出版稿
efficiency of manganese Fig.5 Effect of reaction time on the leaching efficiency of manganes (The solid-liquid mass ratio was 1:10.the mass ratio of EMAS to H2SO,was 1:0.9.the atio of EMAS to H2O2 was 1:0.8,the leaching temperature was 45C) 图5反应时间对阳极泥中锰浸出率的影响 (固液比1:10,电解锰阳极泥与HSO:质量比1:0.9,电解锰阳极泥H02质量比1:0.8,浸出温度45 最终 C) 2.4电解猛阳极泥中幅浸出机理 表1电解锰阳极泥化学成分分析(质量分数.%) Table 1 Chemical composition analysis of EMAS (Wt.%) Chemical composition MnO PbO FeO; SnO2 Cao SeO2 Other Raw EMAS 76.54 5.71 0.07 0.06 2.01 0.27 15.34 Leaching EMAS 1.90 57.85 6.14 1.48 0.43 0.53 31.67 Annotation:When the mass ratio of EMAS toiO was 1:0.8,the mass ratio of EMAS to HSO,was 1:0.9,the leaching temperature was 45 C,the solid-liquid mass ratio was 1:10 and the teaching time was 15 min. 备注:电解锰阳极泥与h02质A8,电解锰阳极泥与kS0,质量比1:0.9,浸出温度45℃,固液比1:10,反应时间15mn。 由表1可知,原电解锰阳极泥中Mn0和Pb0的质量分数分别为76.54%和5.71%,Mn和Pb 的质量分数分别为92又%和5.30%:最优条件得到的浸出渣中MO和Pb0的质量分数分别为 1.90%和57.85%,《Mm和P%的质量分数分别为1.47%和53.71%。上述结果表明,采用H02作为还 原剂浸出电解锰阳极泥,可实现电解锰阳极泥中M的高效浸出和Pb的富集。由图6可知,原电解 锰阳极泥中要含有MhO2、CaSO42HO、MnO3、Pb2-MnsO6、PbSO4、MnSO47H,O以及 H2MnO162.40等物相:而经过H2O2-HSO,体系浸出后得到的浸出渣中MnO2、Pb2. MnsO16、MnSO47H2O的特征衍射峰消失,同时浸出渣中出现了PbSO,特征衍射峰,说明阳极泥中 锰氧化物以及铅锰氧化物被强化浸出,且浸出渣中Pb主要以PbSO,物相存在。由原电解锰阳极泥 SEM分析可知,原电解锰阳极泥表面吸附着大量不规则的细小颗粒,表面粗糙不平,结合XRD结 果分析,这些颗粒主要是锰氧化物以及铅锰氧化物(图7a):采用HO2-HSO,体系浸出得到的浸 出渣表面光滑、颗粒棱角清晰、且颗粒表面无附着物(图7b),结合XRD和XRF分析结果,这些 颗粒物主要是PbSO4。另外,对比原电解锰阳极泥和浸出渣的EDS分析可知,浸出渣中Mn元素含 量相比原电解锰阳极泥含量减少,Pb、S元素含量明显增加,这也进一步证实了原电解锰阳极泥中
Fig. 5 Effect of reaction time on the leaching efficiency of manganese in EMAS (The solid-liquid mass ratio was 1:10, the mass ratio of EMAS to H2SO4 was 1:0.9, the mass ratio of EMAS to H2O2 was 1:0.8, the leaching temperature was 45 ℃) 图 5 反应时间对阳极泥中锰浸出率的影响 (固液比 1:10,电解锰阳极泥与 H2SO4质量比 1:0.9,电解锰阳极泥与 H2O2质量比 1:0.8,浸出温度 45 ℃) 2.4 电解锰阳极泥中锰浸出机理 表 1 电解锰阳极泥化学成分分析(质量分数.%) Table 1 Chemical composition analysis of EMAS (Wt.%) Chemical composition MnO PbO Fe2O3 SnO2 CaO SeO2 Other Raw EMAS 76.54 5.71 0.07 0.06 2.01 0.27 15.34 Leaching EMAS# 1.90 57.85 6.14 1.48 0.43 0.53 31.67 Annotation: # When the mass ratio of EMAS to H2O2 was 1:0.8, the mass ratio of EMAS to H2SO4 was 1:0.9, the leaching temperature was 45 ℃, the solid-liquid mass ratio was 1:10 and the leaching time was 15 min. 备注: #电解锰阳极泥与 H2O2质量比 1:0.8,电解锰阳极泥与 H2SO4质量比 1:0.9,浸出温度 45 ℃,固液比 1:10,反应时间 15 min。 由表 1 可知,原电解锰阳极泥中 MnO 和 PbO 的质量分数分别为 76.54 %和 5.71 %,Mn 和 Pb 的质量分数分别为 59.27 %和 5.30 %;最优条件得到的浸出渣中 MnO 和 PbO 的质量分数分别为 1.90 %和 57.85 %,Mn 和 Pb 的质量分数分别为 1.47 %和 53.71 %。上述结果表明,采用 H2O2作为还 原剂浸出电解锰阳极泥,可实现电解锰阳极泥中 Mn 的高效浸出和 Pb 的富集。由图 6 可知,原电解 锰阳极泥中主要含有 MnO2 、CaSO4·2H2O 、Mn2O3、Pb2-xMn8O16 、PbSO4 、MnSO4·7H2O 以及 H2Mn8O16·2.4H2O 等 物 相 ; 而 经 过 H2O2-H2SO4 体 系 浸 出 后 得 到 的 浸 出 渣 中 MnO2 、 Pb2- xMn8O16、MnSO4·7H2O 的特征衍射峰消失,同时浸出渣中出现了 PbSO4特征衍射峰,说明阳极泥中 锰氧化物以及铅锰氧化物被强化浸出,且浸出渣中 Pb 主要以 PbSO4物相存在。由原电解锰阳极泥 SEM 分析可知,原电解锰阳极泥表面吸附着大量不规则的细小颗粒,表面粗糙不平,结合 XRD 结 果分析,这些颗粒主要是锰氧化物以及铅锰氧化物(图 7a);采用 H2O2-H2SO4体系浸出得到的浸 出渣表面光滑、颗粒棱角清晰、且颗粒表面无附着物(图 7b),结合 XRD 和 XRF 分析结果,这些 颗粒物主要是 PbSO4。另外,对比原电解锰阳极泥和浸出渣的 EDS 分析可知,浸出渣中 Mn 元素含 量相比原电解锰阳极泥含量减少,Pb、S 元素含量明显增加,这也进一步证实了原电解锰阳极泥中 录用稿件,非最终出版稿
第3x卷第00期 环境科学 锰被强化浸出,而浸出渣中的P%主要以PbSO,形式富集。 E 放稿 Fig.6 XRD phase analysis of raw EMAS and leaching residue under optimal conditions (a-Raw EMAS,b-leaching residue under optimal conditions) 图6原电解锰阳极泥和最优条件浸出渣XD物相分析(a原电解锰阳极泥,b-最优条件浸出渣) (a) 2m 2511 P Ca Fig.7 SEM-EDS analysis of the raw EMAS and leaching residue under optimal conditions (a-raw EMAS,b-leaching residue under optimal conditions) 图7原电解锰阳极泥和最优条件下浸出渣SEM-EDS分析(a-原电解锰阳极泥,b-最优条件浸出渣)
第 3x 卷第 00 期 环境科学 锰被强化浸出,而浸出渣中的 Pb 主要以 PbSO4形式富集。 Fig. 6 XRD phase analysis of raw EMAS and leaching residue under optimal conditions (a - Raw EMAS, b - leaching residue under optimal conditions) 图 6 原电解锰阳极泥和最优条件浸出渣 XRD 物相分析(a-原电解锰阳极泥,b-最优条件浸出渣) Fig. 7 SEM-EDS analysis of the raw EMAS and leaching residue under optimal conditions (a - raw EMAS, b - leaching residue under optimal conditions) 图 7 原电解锰阳极泥和最优条件下浸出渣 SEM-EDS 分析(a-原电解锰阳极泥,b-最优条件浸出渣) 录用稿件,非最终出版稿
Fig.8 Infrared absorption spectra of raw EMAS and leaching residue under optimal raw EMAS,b- leaching residue under optimal conditions) 图8原电解锰阳极泥和最优条件浸出渣红外吸收光谱图(-原电解锰阳极泥b-最优条件浸出渣) 由图8可知,在3000cm~3600cm观察到一个伸缩振动峰,该峰归属于样品中H-0-H基团 伸缩振动o Reference sou not found,在3746cm处伸缩振动峰是由OH基团弯曲引起。此外,在487 cm和703cm的吸收峰分别对应电解锰阳极泥表面的MMO基团和Mn-OH基团o Reference oue not o,但浸出渣中的这两处伸缩振动峰消失,这说明电解锰阳极虫的锰氧化物在HSO-H,O2体系中 被还原浸出。在1118cm处原电解锰阳极泥和浸出渣中都出现了伸缩振动峰,这主要是由SO2伸 缩振动引起,而浸出渣在1118cm处的吸收峰变宽变约说明经HO2-HS04体系还原浸出得到的 浸出渣中存在大量硫酸盐,结合XRD、XRF以及EDS分析可知,浸出渣中硫酸盐主要是PbSO4。综 上可知,结合其他研究采用HO2作为还原剂浸出电解锰阳极泥中锰可能发生的反应方程如下: Mm02+H2O2+2H+=Mm2++O2↑+2H30 (2) Mn2O3+H2SO MnSO+MnO2+H3O (3) H2O2-2e=O2↑+2Ht MnO,+4H*+2e 5) +=16Mm2++702↑+32H,0 C6) MnSO4·7H2QM 2+ +S042++7H20 (7) 3结论 本研究利用HO2作为还原剂,实现了电解锰阳极泥中锰的高效浸出和铅的富集。研究结果表明, 在阳极泥与H2O2质量比1:0.8、阳极泥与H2SO,质量比1:0.9、反应温度45℃、固液质量比1:10 条件下浸出15mi,锰的浸出率可达97.23%,浸出渣中铅的含量高达53.71%。浸出机理分析表明, 酸性条件下电解锰阳极泥中锰氧化物被H,O2还原浸出,浸出液中Mn主要以MSO,物相存在,浸 出渣中Pb主要以PbSO,富集。本研究结果为电解锰阳极泥的资源化利用提供了一种新的方法。浸出 机理分析表明
Fig. 8 Infrared absorption spectra of raw EMAS and leaching residue under optimal conditions (a - raw EMAS, b - leaching residue under optimal conditions) 图 8 原电解锰阳极泥和最优条件浸出渣红外吸收光谱图(a-原电解锰阳极泥,b-最优条件浸出渣) 由图 8 可知,在 3000 cm−1~3600 cm−1观察到一个伸缩振动峰,该峰归属于样品中 H-O-H 基团 伸缩振动Error: Reference source not found,在 3746 cm−1处伸缩振动峰是由 H-O-H 基团弯曲引起。此外,在 487 cm−1和 703 cm−1的吸收峰分别对应电解锰阳极泥表面的 Mn-O 基团和 Mn-OH 基团Error: Reference source not found,但浸出渣中的这两处伸缩振动峰消失,这说明电解锰阳极中的锰氧化物在 H2SO4-H2O2体系中 被还原浸出。在 1118 cm−1处原电解锰阳极泥和浸出渣中都出现了伸缩振动峰,这主要是由 SO4 2-伸 缩振动引起,而浸出渣在 1118 cm−1处的吸收峰变宽变尖,说明经 H2O2-H2SO4体系还原浸出得到的 浸出渣中存在大量硫酸盐,结合 XRD、XRF 以及 EDS 分析可知,浸出渣中硫酸盐主要是 PbSO4。综 上可知,结合其他研究采用 H2O2作为还原剂浸出电解锰阳极泥中锰可能发生的反应方程如下: MnO H O H Mn O2 H2O 2 2 2 2 2 2 (2) Mn2O3 H2 SO4 MnSO4 MnO2 H2O (3) H2O2 2e O2 2H (4) MnO H e Mn H2O 2 2 4 2 2 (5) H Mn O H O H Mn O2 H2O 2 2 2 8 16 14 2 2 32 16 7 32 (6) MnSO H O Mn SO H2O 2 4 2 4 2 7 7 (7) 3 结论 本研究利用 H2O2作为还原剂,实现了电解锰阳极泥中锰的高效浸出和铅的富集。研究结果表明, 在阳极泥与 H2O2质量比 1:0.8、阳极泥与 H2SO4质量比 1:0.9、反应温度 45 ℃、固液质量比 1:10 条件下浸出 15 min,锰的浸出率可达 97.23 %,浸出渣中铅的含量高达 53.71 %。浸出机理分析表明, 酸性条件下电解锰阳极泥中锰氧化物被 H2O2还原浸出,浸出液中 Mn 主要以 MnSO4物相存在,浸 出渣中 Pb 主要以 PbSO4富集。本研究结果为电解锰阳极泥的资源化利用提供了一种新的方法。浸出 机理分析表明 录用稿件,非最终出版稿
第3x卷第00期 环境科学 参考文献: [1]Wei H K,Yang Y,Luo D,et al.Research oncomprehensive recovery and utilization of electrolytic manganese anode slime [J].China Manganese Industry,2017,35(Z1):55. (魏汉可,杨勇,罗豆,等.电解金属锰阳极泥的综合回收利用研究).中国锰业,2017,35(z1):55.) [2]Tan L Q,Yang J.Operation analysis of electrolytic Manganese Metal Innovation Alliance from June to August 2021[J].Chinese manganese industry,2021,39(04):69-70. (谭立群,杨娟.2021年6~8月电解金属锰创新联盟运行分析.中国锰业,2021,3904):69-70.) [3]Liang Q H,Ya F B,Lin L M,et al.The Process and Mechanism of Electrolytic Manganese Anode Slime Lead Removal [J].Advanced Materials Research,2014,2930(1756):163. [4]Huang L H,Long H Y,Su H F.Selenium was recovered from electrolytic manganese anodic solution by ammonium sulfite reduction [J].hydrometallurgy,2021,40(02):125-128. (黄丽燕龙湖燕,粟海锋.用亚硫酸铵从电解锰阳极液中还原回收硒.湿法治金,20L0225-128.) [5]Li D H.Study on the utilization of electrolytic manganese anode slime [D].Chongqing Chongging University,2011. (李东海.电解锰阳极泥的利用研究D1.重庆:重庆大学,2011.) [6]Wu Y,Shen H T.Study on comprehensive recovery of manganese and lead from electrolytic manganese anode slime by reducing with modified inorganic reducing agent []Mining and Metallurgy Engineering.2016,36(05):69. (吴焱,沈慧庭.改性无机还原剂还原浸出电解锰阳极泥综合回收锰铅研究.矿治工程,2016,36(05):69.) [7]Fu L,Man R L,Fu Q,et al.Preparation of lithium mangan om electrolytic manganese anode slime [J]. Guangdong Chemical Industry,2018,45(08):13. (符磊,满瑞林,扶强,等电解锰阳极泥制备锰酸锂 2018.45(08):13.) [8]Wang B J,Mu LL,Guo S,et al.Lead leaching mechanism kinetics in electrolytic manganese anode slime[J]. Hydrometallurgy,2019,18398 [9]Gong Q J.Experimental study on removal of impurity by electrolytic manganese anode sludge instead of hydrogen peroxide [J].Xinjiang Nonferrous Metals,2019,42(0451 (宫清颗.电解锰阳极泥代替双氧水除杂试验研究.新疆有色金属,2019.42(04):51.) [10]Xie H M,Li S W,Guo Z H,et al.Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology [J].Journal of Hazardous Materials,2021,407. [11]Shang W,Wang X F,Wen YQ,et al.Preparation of Manganese Dioxide as Battery Material from Manganese Electrolytic Anode Smud Hydrometallurgy,2015,34(02):123. (尚伟,王旭峰,温玉清,等角锰电解阳极泥制备电池材料二氧化锰.湿法治金,2015,34(02):123.) [12]Yang H.Synthesis of Manganese Based Lithium Battery Materials by Using Electrolytic Manganese Anode Slice [D]. Wuhan Institute of Technology,2016. (杨欢.利用电解锰阳极泥制备的前驱体合成锰基锂电池材料D].武汉工程大学,2016.) [13]Huang L Q.Study on the technology of electrolytic manganese anode slime preparation of lithium manganese ate cathode material [D].Wuhan Institute of Technology,2014. (黄良取.电解锰阳极泥制备锰酸锂电池正极材料的工艺研究D].武汉工程大学,2014.) [14]Liu L,Zhang H B,Guo S,et al.Heat treatmentof electrolytic manganese anode slime and its lead ion leaching [J] Safety and Environmental Engineering,2016,23(02):50. (刘璐,张宏波,郭颂,等.电解锰阳极泥的热处理及其铅离子的浸出[U.安全与环境工程,2016,23(02):50.) [15]Qin Z C,Ming X Q,Li C X,Su H F.Reduction leaching of Manganese and Selenium from electrolytic manganese anode slime with ammonium sulfite[J].Non-ferrous Metals(Smelting),2020(10):55-59. (罩兆财,明宪权,李春霞,粟海锋.亚硫酸铵还原浸出电解锰阳极泥中锰和硒的研究.有色金属(治炼部
第 3x 卷第 00 期 环境科学 参考文献: [1] Wei H K, Yang Y, Luo D, et al. Research oncomprehensive recovery and utilization of electrolytic manganese anode slime [J]. China Manganese Industry, 2017,35(Z1):55. (魏汉可,杨勇,罗豆,等. 电解金属锰阳极泥的综合回收利用研究[J]. 中国锰业,2017,35(z1):55.) [2] Tan L Q, Yang J. Operation analysis of electrolytic Manganese Metal Innovation Alliance from June to August 2021[J]. Chinese manganese industry, 2021,39(04):69-70. (谭立群,杨娟.2021 年 6~8 月电解金属锰创新联盟运行分析[J].中国锰业,2021,39(04):69-70.) [3] Liang Q H, Ya F B, Lin L M, et al. The Process and Mechanism of Electrolytic Manganese Anode Slime Lead Removal [J]. Advanced Materials Research,2014,2930(1756):163. [4] Huang L H, Long H Y, Su H F. Selenium was recovered from electrolytic manganese anodic solution by ammonium sulfite reduction [J].hydrometallurgy,2021,40(02):125-128. (黄丽燕,龙湖燕,粟海锋.用亚硫酸铵从电解锰阳极液中还原回收硒[J].湿法冶金,2021,40(02):125-128.) [5] Li D H. Study on the utilization of electrolytic manganese anode slime [D]. Chongqing: Chongqing University,2011. (李东海. 电解锰阳极泥的利用研究[D]. 重庆:重庆大学,2011.) [6] Wu Y, Shen H T. Study on comprehensive recovery of manganese and lead from electrolytic manganese anode slime by reducing with modified inorganic reducing agent [J]. Mining and Metallurgy Engineering,2016,36(05):69. (吴焱,沈慧庭. 改性无机还原剂还原浸出电解锰阳极泥综合回收锰铅研究[J]. 矿冶工程,2016,36(05):69.) [7] Fu L, Man R L, Fu Q, et al. Preparation of lithium manganate from electrolytic manganese anode slime [J]. Guangdong Chemical Industry,2018,45(08):13. (符磊,满瑞林,扶强,等.电解锰阳极泥制备锰酸锂[J]. 广东化工,2018,45(08):13.) [8] Wang B J, Mu L L, Guo S, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime[J]. Hydrometallurgy, 2019, 18398. [9] Gong Q J. Experimental study on removal of impurity by electrolytic manganese anode sludge instead of hydrogen peroxide [J]. Xinjiang Nonferrous Metals,2019,42(04):51. (宫清颗. 电解锰阳极泥代替双氧水除杂试验研究[J]. 新疆有色金属,2019,42(04):51.) [10]Xie H M, Li S W, Guo Z H, et al. Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology [J]. Journal of Hazardous Materials,2021,407. [11]Shang W, Wang X F, Wen Y Q, et al. Preparation of Manganese Dioxide as Battery Material from Manganese Electrolytic Anode Smud [J]. Hydrometallurgy,2015,34(02):123. (尚伟,王旭峰,温玉清,等. 用锰电解阳极泥制备电池材料二氧化锰[J]. 湿法冶金,2015,34(02):123.) [12]Yang H. Synthesis of Manganese Based Lithium Battery Materials by Using Electrolytic Manganese Anode Slice [D]. Wuhan Institute of Technology,2016. (杨欢. 利用电解锰阳极泥制备的前驱体合成锰基锂电池材料[D]. 武汉工程大学,2016.) [13]Huang L Q. Study on the technology of electrolytic manganese anode slime preparation of lithium manganese ate cathode material [D]. Wuhan Institute of Technology,2014. (黄良取. 电解锰阳极泥制备锰酸锂电池正极材料的工艺研究[D]. 武汉工程大学,2014.) [14]Liu L, Zhang H B, Guo S, et al. Heat treatmentof electrolytic manganese anode slime and its lead ion leaching [J]. Safety and Environmental Engineering,2016,23(02):50. (刘璐,张宏波,郭颂,等. 电解锰阳极泥的热处理及其铅离子的浸出[J]. 安全与环境工程,2016,23(02):50.) [15]Qin Z C, Ming X Q, Li C X,Su H F.Reduction leaching of Manganese and Selenium from electrolytic manganese anode slime with ammonium sulfite[J].Non-ferrous Metals (Smelting),2020(10):55-59. (覃兆财,明宪权,李春霞,粟海锋.亚硫酸铵还原浸出电解锰阳极泥中锰和硒的研究[J].有色金属(冶炼部 录用稿件,非最终出版稿
分),2020(10):55-59.) [16]Wang Y H,Qing Z C,Hang L Y,Xin Y,Su H F.Study on Selenium enrichment by Two-stage Leaching of Manganese from Anode slime of Electrolytic Manganese [J].Hydrometallurgy,2020,39(02):118-122. (王雨红,罩兆财,黄丽燕,辛宇,粟海锋.从电解锰阳极泥中两段浸出锰富集硒试验研究湿法冶 金,2020,39(02:118-122) [17]Wang Y H.Qin Z Ci,Huang L Y,et al.Experimental study on manganese enrichment by two-stage leaching from electrolytic manganese anode slime [J].Hydrometallurgy,202,39(2):118 (王雨红,罩兆财,黄丽燕,等.从电解锰阳极泥中两段浸出锰富集硒试验研究.湿法治金,2020,39(2):118.) [18]Li Y F.Li X.Ye H.et al.Extraction of Manganese Anode Slime by Sulfur Reduction Roasting-Acid Leaching Method [J].Nonferrous Metals (Smelting Part),2017(08):13. (黎应芬,李祥,叶华,等.硫磺还原焙烧-酸浸法提取锰阳极泥几.有色金属(治炼部,2017(08):13.) [19]Li Y F.Leaching of Manganese Anode Slime in FeS2-H2SO-H2O System uangzhou Chemical Industry,2012,40(14):75. (黎应芬.FS2-HSO4-HzO体系浸出锰阳极泥几.广州化工,2012.40(14):75.) [20]Liu G Y,Shen H T,Wang Q.Research on recovery of manganese and lead by organic reduction leaching of electrolytic manganese anode slime [J].Mining and Metallurgy Engineering,2014,34(04):92 (刘贵扬,沈慧庭,王强.电解锰阳极泥有机还原浸出回收锰和铅的砑究光权治工程,2014,34(04):92.) [21]Wang B N,Zuo Q,Chen Y,et al.Study on leaching of chalcocite in H2O2-Fe(SO)-H2SO system [J].Nonferrous Metals (Smelting Section),2016(12):5. (王百年,左权,陈洋,等.HOx-F(SO4):HSO4体系中辉铜的浸取研究[J.有色金属(治炼部分),2016(12):5.) [22]Kang L H,Zhu P.Zhao S,et al.Leaching behavior of e manganese ore in NH HSO/H2O2 system [J]. Hydrometallurgy,2019,38(02):96. (康禄华,朱鹏,赵珊,等.低品位锰矿石在OHO2体系中的浸出行为U.湿法治金,2019,38(02):96.) [23]Zhou J K.Liu M D,Liu Y,et al.Experimental study on the leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide [J].Mining and Metallurgy Engineering,2020,40(06):79. (周吉奎,刘牡丹,刘勇,等,疏酸-双氧水浸出废弃磷酸铁锂中锂的实验研究.矿冶工程,2020,40(06):79.) [24]Liang W H,Zheng S L.Wu L J,et ak Experimental study on reducing leaching of African copper-cobalt oxide ore with hydrogen peroxide [J].Nonferrous Metals Materials and Engineering.2018,39(04):38. (梁伟华,郑世林,吴理微,风 等双氧水还原浸出非洲氧化铜钴矿的试验研究几.有色金属材料与工 程,20183904):38.) [25]M.Esmaeili,S.O.Rastegar,R.Beigzadeh,T.Gu.Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O.Chemosphere,2020,254. [26]Zhou J,Pan Teng Y et al.Study on Leaching Rate of Manganese Oxide Ore Reduced by Hydrogen Peroxide [J]. China Mangapese Industry,2013.31(02):18. (周杰,潘奇滕亚,等双氧水还原氧化锰矿的浸出率研究.中国锰业,2013,31(02):18.) [27]Sanja J.PETROVI,Grozdanka D.BOGDANOVI,Milan M.ANTONIJEVI.Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution [J].Transactions of Nonferrous Metals Society of China,2018,28(07):1444. [28]Liu JC,Xiong D L,Zhang J P,et al.Study on iron and manganese leaching process of tungsten smelting slag [J]. Nonferrous Metals Science and engineering.2018,9(04):14 (刘健聪,熊道陵,张建平,曹雪文,宗毅,王露琦欧阳少波钨治炼渣中铁、锰浸出工艺研究有色金属科学与工 程,2018,904):14.) [29]Wang PP.Study on nickel extraction from laterite nickel ore by atmospheric sulfuric acid leaching [D].Guangxi University,2020
分),2020(10):55-59.) [16]Wang Y H, Qing Z C, Hang L Y, Xin Y, Su H F. Study on Selenium enrichment by Two-stage Leaching of Manganese from Anode slime of Electrolytic Manganese [J]. Hydrometallurgy,2020,39(02):118-122. ( 王 雨 红 , 覃 兆 财 , 黄 丽 燕 , 辛 宇 , 粟 海 锋 . 从 电 解 锰 阳 极 泥 中 两 段 浸 出 锰 富 集 硒 试 验 研 究 [J]. 湿 法 冶 金,2020,39(02):118-122) [17]Wang Y H, Qin Z Ci, Huang L Y, et al. Experimental study on manganese enrichment by two-stage leaching from electrolytic manganese anode slime [J]. Hydrometallurgy,202,39(2):118. (王雨红,覃兆财,黄丽燕, 等. 从电解锰阳极泥中两段浸出锰富集硒试验研究[J]. 湿法冶金,2020,39(2):118.) [18]Li Y F, Li X, Ye H, et al. Extraction of Manganese Anode Slime by Sulfur Reduction Roasting-Acid Leaching Method [J]. Nonferrous Metals (Smelting Part),2017(08):13. (黎应芬,李祥,叶华,等. 硫磺还原焙烧-酸浸法提取锰阳极泥[J]. 有色金属(冶炼部分),2017(08):13.) [19]Li Y F. Leaching of Manganese Anode Slime in FeS2-H2SO4-H2O System [J]. Guangzhou Chemical Industry,2012,40(14):75. (黎应芬. FeS2-H2SO4-H2O 体系浸出锰阳极泥[J]. 广州化工,2012,40(14):75.) [20]Liu G Y, Shen H T, Wang Q. Research on recovery of manganese and lead by organic reduction leaching of electrolytic manganese anode slime [J]. Mining and Metallurgy Engineering,2014,34(04):92. (刘贵扬,沈慧庭,王强. 电解锰阳极泥有机还原浸出回收锰和铅的研究[J]. 矿冶工程,2014,34(04):92.) [21]Wang B N, Zuo Q, Chen Y, et al. Study on leaching of chalcocite in H2O2-Fe2(SO4)3-H2SO4 system [J]. Nonferrous Metals (Smelting Section),2016(12):5. (王百年,左权,陈洋,等. H2O2-Fe2(SO4)3-H2SO4体系中辉铜矿的浸取研究[J]. 有色金属(冶炼部分),2016(12):5.) [22]Kang L H, Zhu P, Zhao S, et al. Leaching behavior of low grade manganese ore in NH4HSO4/H2O2 system [J]. Hydrometallurgy,2019,38(02):96. (康禄华,朱鹏,赵珊,等. 低品位锰矿石在 NH4HSO4/H2O2体系中的浸出行为[J]. 湿法冶金,2019,38(02):96.) [23]Zhou J K, Liu M D, Liu Y, et al. Experimental study on the leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide [J]. Mining and Metallurgy Engineering,2020,40(06):79. (周吉奎,刘牡丹,刘勇,等. 硫酸-双氧水浸出废弃磷酸铁锂中锂的实验研究[J]. 矿冶工程,2020,40(06):79.) [24]Liang W H, Zheng S L, Wu L J, et al. Experimental study on reducing leaching of African copper-cobalt oxide ore with hydrogen peroxide [J]. Nonferrous Metals Materials and Engineering,2018,39(04):38. (梁伟华,郑世林,吴理觉,等 .双氧水还原浸出非洲氧化铜钴矿的试验研究 [J]. 有色金属材料与工 程,2018,39(04):38.) [25]M. Esmaeili,S.O. Rastegar,R. Beigzadeh,T. Gu. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2[J]. Chemosphere,2020,254. [26]Zhou J, Pan Q, Teng Y, et al. Study on Leaching Rate of Manganese Oxide Ore Reduced by Hydrogen Peroxide [J]. China Manganese Industry,2013,31(02):18. (周杰,潘奇,滕亚,等.双氧水还原氧化锰矿的浸出率研究[J]. 中国锰业,2013,31(02):18.) [27]Sanja J.PETROVI,Grozdanka D.BOGDANOVI,Milan M.ANTONIJEVI.Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution[J].Transactions of Nonferrous Metals Society of China,2018,28(07):1444. [28]Liu J C, Xiong D L, Zhang J P, et al. Study on iron and manganese leaching process of tungsten smelting slag [J]. Nonferrous Metals Science and engineering, 2018,9(04):14 (刘健聪,熊道陵,张建平,曹雪文,宗毅,王露琦,欧阳少波.钨冶炼渣中铁、锰浸出工艺研究[J].有色金属科学与工 程,2018,9(04):14.) [29]Wang P P. Study on nickel extraction from laterite nickel ore by atmospheric sulfuric acid leaching [D]. Guangxi University, 2020. 录用稿件,非最终出版稿