《工程科学学报》录用稿,htps:/doi.org/10.13374/i,issn2095-9389.2021.09.07.003©北京科技大学2020 A山2O,对超高碱度连铸保护渣理化性能的影响 中AH2O3的作用特性 李刚”,潘伟杰),李民”,朱礼龙),何生平@ 1)重庆大学材料科学工程学院,钒钛治金及新材料重庆市重点实验室,重庆,400044 科技学 重庆,沙坪坝, 401331 ☒通信作者,E-mail:heshp@cqu.edu.cn 摘要A,O是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧 化物的行为,是治金熔渣中常见的一种组元。论实以超高碱度保护渣综合碱度R=1.75)为研究对象,分 析了AlO3对保护渣流动特性、熔化特性和凝固特性的影响规律,研究结果显示:随着AO,增洲,黏度和 熔化温度增大,转折温度降低。此外研究发现—渣中AO含量每增加1wt%,熔化温度上升5C左右, 转折温度下降12℃左右,开始结晶温度平均下降3洲11心A上结论中同样出现该数字二但正文中未出山现 安盘空的来源以乎识。一土。平均结晶速率随渣中A1,O,增加而减小,4山0对结品速率有品著影响。保护 渣结晶矿相研究表明,且随着A1,O,增加,保护渣绕品矿广相中断日晶体比例逐渐降低,但晶体保持枪晶石 的种类不变。 关键词A2O:保护渣:超高碱度:结晶性能 分类号TG142.71 Effect of Al2O,on the physical and chemical properties of ultra- high basicity continuous casting mold fluxTheaetion eharaeteristies of AlO:in ultra-high basieity continuous easting mold Alux LI Gang,PAN Weijie,LI Min,ZHU Lilong,HE Shengping 1)College of Materials Science and Engineering,and Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced Materials,Chongqing University,400044,Chongqing,China 2)Chongqing University of Science and Technology,401331 Chongqing,China) Corresponding author,E-mail:heshp@cqu.edu.cn 基盒项目:国家自然科学基金面上项目(编号:51874057和52074054),重庆市自然科学基金资助项目 (编号:stc2020jcyj-msxmX0605)
Al2O3对超高碱度连铸保护渣理化性能的影响 中 Al2O3的作用特性 李刚 1),潘伟杰 1),李民 1),朱礼龙 2),何生平 1) 1) 重庆大学材料科学工程学院,钒钛冶金及新材料重庆市重点实验室,重庆, 400044 2) 重庆科技学院,重庆,沙坪坝, 401331 通信作者,E-mail: heshp@cqu.edu.cn 摘 要 Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧 化物的行为,是冶金熔渣中常见的一种组元。论文以超高碱度保护渣(综合碱度 R=1.75)为研究对象,分 析了 Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律。研究结果显示:随着 Al2O3增加,黏度和 熔化温度增大,转折温度降低。此外,研究还发现,渣中 Al2O3含量每增加 1 wt%,熔化温度上升 5℃左右, 转折温度下降 12℃左右,开始结晶温度平均下降 3411℃左右【结论中同样出现该数字,但正文中未出现 该数字的来源,似乎有误。】。平均结晶速率随渣中 Al2O3增加而减小,Al2O3对结晶速率有显著影响。保护 渣结晶矿相研究表明,且随着 Al2O3增加,保护渣结晶矿相中断口晶体比例逐渐降低,但晶体保持枪晶石 的种类不变。 关键词 Al2O3;保护渣;超高碱度;结晶性能1 分类号 TG142.71 Effect of Al2O3 on the physical and chemical properties of ultrahigh basicity continuous casting mold fluxThe action characteristics of Al2O3 in ultra-high basicity continuous casting mold flux LI Gang1) ,PAN Weijie1) ,LI Min1) ,ZHU Lilong2) ,HE Shengping1) 1) College of Materials Science and Engineering, and Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced Materials, Chongqing University, 400044, Chongqing, China 2) Chongqing University of Science and Technology, 401331 Chongqing, China) Corresponding author, E-mail: heshp@cqu.edu.cn 1基金项目:国家自然科学基金面上项目(编号:51874057 和 52074054),重庆市自然科学基金资助项目 (编号:stc2020jcyj-msxmX0605) 《工程科学学报》录用稿,https://doi.org/10.13374/j.issn2095-9389.2021.09.07.003 ©北京科技大学 2020 录用稿件,非最终出版稿
ABSTRACT The aluminum oxide is a common component in mold powder,and is a kind of amphoteric oxide, which shows the characteristics of acid oxide under high alkalinity condition and shows the characteristics of alkaline oxide under low alkalinity condition.In general,adding the Al,O,to the traditional CaO-SiO,-based mold flux will increase the viscosity and melting point of the mold flux.which will reduce the mold flux's ability to adsorb inclusions.In addition.as the content of AlO;in the slag increases,the solidification temperature of the slag can be reduced,thereby improving the lubricating ability of the mold flux.At present,the research on the crystallization performance of AlO on mold flux mainly focuses on low-reactivity or non-reactive mold fluxes for high-aluminum steel and high-titanium steel.Relevant studies have shown that Al2O:in low-reactivity or non- reactive mold flux can increase the crystallization incubation time of the mold flux reduce the critical cooling rate of the flux,and inhibit the crystallization process of the flux.In the range of low alkalinity or higher alkalinity (R=1.2~1.5)mold powder or new Cao-Al2O:based low-reactivity mold powder,the addition of AlO;will increase the viscosity of the slag increase the melting point and decrease the solidifmperature (or Increase)and decrease in crystallization performance.In recent vears.ultra-high alkalinity mold powder (R=165-185)has been successfully applied in peritectic steel continuous casting mold powder.effectively coordinating the contradiction between mold powder heat transfer and lubrication function.Howeyer.there is no relevant report on the influence of Al on the performance of mold flux under ultra-high alkalinity conditions.In this paper,ultra-high alkalinity mold flux (comprehensive alkalinity R=1 75 is taken as the research object,and the influence of AlO on the flow characteristics.melting characteristics and solidification characteristics of mold flux is analyzed.The research results show that as Al2O:increases,the viscosity and melting temperature increase. and the transition temperature decreases.As the content of AlO in the slag increases.the viscosity and melting temperature increase.and the transition temperature deefeases Among them.with an average increase of 1% AlO:the melting temperature of the mold flux will increase by about 5C.and the turning temperature will decrease by about 12C.In addition,as the AlOcontent in the slag increases by 1%the starting crystallization temperature drops by about 1C on average The average crystallization rate decreases with the increase of AlO in the slag.and AlO has a significant effect on the crystallization rate.And with the increase of the content of Al,O:in the slag,the proportion of crystals in the crystalline phase of the mold slag gradually decreases,but the type of crystals remains unchanged a eommon eomponent in meld powder,is a kind of amphoterie oxide, which shows the charaeteristies of peid exide under high alkalinity condition and shows the characteristies of alkaline oxide under low alkalinity condition.In this paper,the influence of Al,on the fowing eharaeteristies, fiention eharaeteristies of ultra-high basieity mold fluxes was analyzed.The results showed that with the mereese of AlO,,the viseosity and melting temperature inereased,and the transition temperature deeredsed In addition,the study also found that the initial erystallization temperature deereased by 34 C on average when the ALO,content inereased by 1 wt%.The average erystallization rate deereased with the addition e he mold fluxes,and AlO,had a signifieant effeet on the erystallization rate.The results showed that t proportion of erystals in the fraeture deereased with the inerease of Al2O.,but the erystal phase remained the KEY WORDS Al2O3 mold fluxes ultra-high basicity crystallization property 两性氧化物AO3是治金熔渣中常见的一种组元,对熔渣物化性能具有重要影响。在传 统CaO-SO2基连铸保护渣中,Al2O3含量相对较低,主要来源于生产原料,一般不作为性 能调节的组分。但是,在铝镇静钢连铸过程中,如果钢水洁净度较差,致使大量似乎不去 会适O;上浮到保护渣中,将引起保护渣性能的变化,并进一步妨碍保护渣传热和润滑 功能的正常发挥。在低碱度或较高碱度R=1.2~1.5)保护渣或新型CO-AlO,基低反应性保护 渣范围内,加入AO会使渣的黏度增加、熔点升高、凝固温度降低(或增加)和结晶性能
ABSTRACT The aluminum oxide is a common component in mold powder, and is a kind of amphoteric oxide, which shows the characteristics of acid oxide under high alkalinity condition and shows the characteristics of alkaline oxide under low alkalinity condition. In general, adding the Al2O3 to the traditional CaO-SiO2-based mold flux will increase the viscosity and melting point of the mold flux, which will reduce the mold flux’s ability to adsorb inclusions. In addition, as the content of Al2O3 in the slag increases, the solidification temperature of the slag can be reduced, thereby improving the lubricating ability of the mold flux. At present, the research on the crystallization performance of Al2O3 on mold flux mainly focuses on low-reactivity or non-reactive mold fluxes for high-aluminum steel and high-titanium steel. Relevant studies have shown that Al2O3 in low-reactivity or nonreactive mold flux can increase the crystallization incubation time of the mold flux, reduce the critical cooling rate of the flux, and inhibit the crystallization process of the flux. In the range of low alkalinity or higher alkalinity (R=1.2~1.5) mold powder or new CaO-Al2O3 based low-reactivity mold powder, the addition of Al2O3 will increase the viscosity of the slag, increase the melting point, and decrease the solidification temperature (or Increase) and decrease in crystallization performance. In recent years, ultra-high alkalinity mold powder (R=1.65~1.85) has been successfully applied in peritectic steel continuous casting mold powder, effectively coordinating the contradiction between mold powder heat transfer and lubrication function. However, there is no relevant report on the influence of Al2O3 on the performance of mold flux under ultra-high alkalinity conditions. In this paper, ultra-high alkalinity mold flux (comprehensive alkalinity R=1.75) is taken as the research object, and the influence of Al2O3 on the flow characteristics, melting characteristics and solidification characteristics of mold flux is analyzed. The research results show that as Al2O3 increases, the viscosity and melting temperature increase, and the transition temperature decreases. As the content of Al2O3 in the slag increases, the viscosity and melting temperature increase, and the transition temperature decreases. Among them, with an average increase of 1% Al2O3, the melting temperature of the mold flux will increase by about 5 , and the turning temperature will ℃ decrease by about 12 . In addition, as the ℃ Al2O3 content in the slag increases by 1%, the starting crystallization temperature drops by about 11°C on average. The average crystallization rate decreases with the increase of Al2O3 in the slag, and Al2O3 has a significant effect on the crystallization rate. And with the increase of the content of Al2O3 in the slag, the proportion of crystals in the crystalline phase of the mold slag gradually decreases, but the type of crystals remains unchanged.Al2O3, a common component in mold powder, is a kind of amphoteric oxide, which shows the characteristics of acid oxide under high alkalinity condition and shows the characteristics of alkaline oxide under low alkalinity condition. In this paper, the influence of Al2O3 on the flowing characteristics, melting characteristics and solidification characteristics of ultra-high basicity mold fluxes was analyzed. The results showed that with the increase of Al2O3, the viscosity and melting temperature increased, and the transition temperature decreased. In addition, the study also found that the initial crystallization temperature decreased by 34 ℃ on average when the Al2O3 content increased by 1 wt%. The average crystallization rate decreased with the addition of Al2O3 in the mold fluxes, and Al2O3 had a significant effect on the crystallization rate. The results showed that the proportion of crystals in the fracture decreased with the increase of Al 2O3, but the crystal phase remained the cuspidine. KEY WORDS Al2O3;mold fluxes;ultra-high basicity;crystallization property 两性氧化物 Al2O3是冶金熔渣中常见的一种组元,对熔渣物化性能具有重要影响。在传 统 CaO-SiO2基连铸保护渣中,Al2O3含量相对较低,主要来源于生产原料,一般不作为性 能调节的组分。但是,在铝镇静钢连铸过程中,如果钢水洁净度较差,致使 大量(似乎不太 合适)Al2O3上浮到保护渣中,将引起保护渣性能的变化,并进一步妨碍保护渣传热和润滑 功能的正常发挥。在低碱度或较高碱度(R=1.2~1.5)保护渣或新型 CaO-Al2O3基低反应性保护 渣范围内,加入 Al2O3会使渣的黏度增加、熔点升高、凝固温度降低(或增加)和结晶性能 录用稿件,非最终出版稿
减弱-68,山。近年来,超高碱度保护渣(R=1.65~1.85)在包晶钢连铸保护渣得到成功应用, 有效协调了保护渣传热和润滑功能的矛盾,9,但是在超高碱度条件下A1,O,对保护渣性能 影响规律还未见相关报道。为此,本文以超高碱度保护渣为研究对象,分析A12O3对保护渣 熔化温度、黏度特性和结晶性能的影响趋势。 1研究方法 设计的保护渣综合三元碱度R表达式包含CaQC出和SiO三种成分,就应该称为三 碱度)为R为=1.75(R=(wt%CaO+56/78×wt%CaF2)/wt%SiO2),,_保护渣中各成分所用 的原料均为化学纯,其中CaO、Na2O、Li2O0由相应的碳酸盐CaCO3、NaCO3、LiCO3替代, 保护渣设计采用单因素变量法,即保持渣中综合碱度及其他组分固定,仅改变渣中AO 含量,实验过程中各成分具体含量及标号如表1所示。 表1保护撞的化学组份及其培量(wt%) Table 1 Chemical composition and content of mold fluxes Sample Chemical composition (wt%) Number CaO SiO2 CaF2 Na2O MgO ALO Fe2O: Al 34.81 28.74 21.55 6 2.4 1.5 A2 33.54 28.01 21.55 2.4 1.5 A3 32.27 27.28 21.55 2.4 1.5 A4 31.00 26.55 21.55 2.4 1.5 实验中黏度及黏度-温度曲线测试采用旋转黏度针测试。在保护渣研究中,凝固温度一 般采用粘度黏度温度曲线法,即在一定的降温速度,粘度黏度发生突变的点,称为转折 温度T,确定方法见文献9,5-,其意义为液相润滑消失,固相润滑开始时刻。熔化温度的 测试采用半球点熔化温度测试仪。度全度在土玉实不一致出 结晶热力学的计算采用8.0版本FactSage软件,计算中选择Equilib模块中耗时相对较 少的平衡凝固模型P-2。采用改进的实时高温原位结晶性能测试仪进行结晶性能的研究,一。 取经过熔化后的块状保护渣纪753mg,然后放入壁厚为02mm,直径为6mm,高为 4.5mm的铂金坩埚内,同卧在铂金坩埚上方放置玻璃片,可以在有效减小保护渣加热过程 中氟化物挥发的同时,一没备在保证原位观察的同时,很好地避免子熔渣中氟化物的挥发 提高了实验过程中的准确性,其设备如图1所示。按照预先设置好的升温速率升至 1300℃,并保温黑?min以保证样品熔化均匀,随后设置不同的降温速率(本文 选取的冷却速率为心S,2℃S及3Cs)进行降温,观察并记录渣样的结晶过程。在降温 过程中采用2次s的拍照速度。用PhotoshopPS软件对结晶照片进行处理,将结晶态像素与 整个视场的此近似看作面积比,并以此作为晶体比例。通常,将液渣中结晶态面积占视场 总面积的%时对应的温度定义为保护渣的开始结晶温度,而当结晶态面积达到视场总面 积90%时认为结晶完全8,23-2。在此基础上,将熔渣由开始结晶到结晶完成90%的时间定义 为结晶时间,而将结晶比例与结晶时间的比值定义为平均结晶速率。不同时刻结晶态典型 的照片如图2所示
减弱[1-6,8,11]。近年来,超高碱度保护渣(R=1.65~1.85)在包晶钢连铸保护渣得到成功应用, 有效协调了保护渣传热和润滑功能的矛盾[7,9-14],但是在超高碱度条件下 Al2O3对保护渣性能 影响规律还未见相关报道。为此,本文以超高碱度保护渣为研究对象,分析 Al2O3对保护渣 熔化温度、黏度特性和结晶性能的影响趋势。 1 研究方法 设计的保护渣综合三元碱度(R 表达式包含 CaO、CaF2和 SiO2三种成分,就应该称为三 元碱度)为 R 为=1.75(R=(wt%CaO+56/78×wt%CaF2)/ wt%SiO2),,保护渣中各成分所用 的原料均为化学纯,其中 CaO、Na2O、Li2O 由相应的碳酸盐 CaCO3、Na2CO3、Li2CO3替代, 保护渣设计采用单因素变量法,即保持渣中综合碱度及其他组分固定,仅改变渣中 Al2O3 含量,实验过程中各成分具体含量及标号如表 1 所示。 表 1 保护渣的化学组分及其含量(wt%) Table 1 Chemical composition and content of mold fluxes (wt%) Sample Number Chemical composition (wt%) CaO SiO2 CaF2 Na2O MgO Al2O3 Li2O Fe2O3 A1 34.81 28.74 21.55 6 3 2 2.4 1.5 A2 33.54 28.01 21.55 6 3 4 2.4 1.5 A3 32.27 27.28 21.55 6 3 6 2.4 1.5 A4 31.00 26.55 21.55 6 3 8 2.4 1.5 实验中黏度及黏度-温度曲线测试采用旋转黏度计测试。在保护渣研究中,凝固温度一 般采用粘度黏度-温度曲线法,即在一定的降温速度下,粘度黏度发生突变的点,称为转折 温度 Tbr,确定方法见文献[7,9,15-18],其意义为液相润滑消失,固相润滑开始时刻。熔化温度的 测试采用半球点熔化温度测试仪。 【黏度、粘度在上下文不一致】 结晶热力学的计算采用 8.0 版本 FactSage 软件,计算中选择 Equilib 模块中耗时相对较 少的平衡凝固模型[20-22]。采用改进的实时高温原位结晶性能测试仪进行结晶性能的研究,。 取经过熔化后的块状保护渣样品 75±5mg,然后放入壁厚为 0.2mm,直径为 6mm,高为 4.5mm 的铂金坩埚内,同时在铂金坩埚上方放置玻璃片,可以在有效减小保护渣加热过程 中氟化物挥发的同时,此设备在保证原位观察的同时,很好地避免了熔渣中氟化物的挥发 提高了实验过程中的准确性[8-9],其设备如图 1 所示。按照预先设置好的升温速率升至 1300℃,并保温 1(确认是 1?)min 以保证样品熔化均匀,随后设置不同的降温速率(本文 选取的冷却速率为 1 /s ℃ ,2 /s ℃ 及 3 /s ℃ )进行降温,观察并记录渣样的结晶过程。在降温 过程中采用 2 次/s 的拍照速度。用 PhotoshopPS 软件对结晶照片进行处理,将结晶态像素与 整个视场的比近似看作面积比,并以此作为晶体比例。通常,将液渣中结晶态面积占视场 总面积的 5 %时对应的温度定义为保护渣的开始结晶温度,而当结晶态面积达到视场总面 积 90 %时认为结晶完全[8,23-25]。在此基础上,将熔渣由开始结晶到结晶完成 90 %的时间定义 为结晶时间,而将结晶比例与结晶时间的比值定义为平均结晶速率。不同时刻结晶态典型 的照片如图 2 所示。 录用稿件,非最终出版稿
CCD camera ■1结晶性能测试装置示意图 作最终出胶稿 Fig.1 Schematics of experimental apparatus for crystallization (a) (b) 其y” (d) 《a)渣样熔清,(b)开始结晶(晶体比例S%),(c)晶体生长(晶体比 2结作aCaa 例50%),(d)结晶完全(晶体比例90%) crystal ratio 50%).(d)Crystallization of complete (crystal ratio 90%) 2 结果与分析 2.1贴度与转折温度 渣中A12O,对超高碱度保护渣黏度及转折温度的影响见图32。随着AO,由2%(表示 百分含量,下同)增加到8%,保护渣的黏度略微增大,但变化幅度不大,1300℃黏度位 于0.05~0.15Pas之间,在包晶钢板坯连铸保护渣范围内7。但转折温度变化较为明显,保 护渣转折温度由A1渣的1194℃首先降到A2渣的1166℃,然后降到A3的1145℃,最后 降为A4的1120℃。渣中平均每增加1%A1203,转折温度下降12℃左右拟合转折温度王 #=127125A出0=099721。超高碱度保护渣碱度较高,认为AlO3在此渣系中主要
图 1 结晶性能测试装置示意图 Fig. 1 Schematics of experimental apparatus for crystallization. (a) (b) (c) (d) 图 2 保护渣的结晶行为:(a)渣样熔清,(b)开始结晶(晶体比例 5%),(c)晶体生长(晶体比 例 50%),(d)结晶完全(晶体比例 90%) Fig. 2 Crystallization behavior:(a) Melting of sample, (b) Beginning of crystallize, (c) Crystal growth (crystal ratio 50%), (d) Crystallization of complete (crystal ratio 90%) 2 结果与分析 2.1 黏度与转折温度 渣中 Al2O3对超高碱度保护渣黏度及转折温度的影响见图 32。随着 Al2O3由 2 %(表示 百分含量,下同)增加到 8 %,保护渣的黏度略微增大,但变化幅度不大,1300 ℃黏度位 于 0.05~0.15 Pa·s 之间,在包晶钢板坯连铸保护渣范围内[7 ]。但转折温度变化较为明显,保 护渣转折温度由 A1 渣的 1194 ℃首先降到 A2 渣的 1166 ℃,然后降到 A3 的 1145 ℃,最后 降为 A4 的 1120 ℃。渣中平均每增加 1 % Al2O3,转折温度下降 12 ℃左右【拟合转折温度 T 转=1217-12.15*%Al2O3,R 2 =0.9972】。超高碱度保护渣碱度较高,认为 Al2O3在此渣系中主要 录用稿件,非最终出版稿
以酸性氧化物存在,它会吸收O2形成[A1O],增加熔渣的网络结构复杂性,导致熔渣中 离子迁移速率减慢,转折温度降低。 3.5a A2032% 1225 (b) Measured 30 +A120g4% Fitting 一A2036% 1200 25 A203-8% 20 50 10y=-12.15+1217 R2=0.99579 0.5 1125 0.0 1100 1100 11501200 1250 1300 r(C 围32A1~A4渣的基础性能:(a)黏温曲线;(b)转折温度建议柱状图颜色与 度曲线颜色分别对应】 Fig.32 Basic properties of mold fluxes:(a)Viscosity-temperature curve;(b)Break temperature 2.2焙化温度 A1~A4渣的熔化温度测试结果见图34。由图可知AlO含量的增加会提高超高碱度保 护渣的熔化温度。超高碱度保护渣的熔化温度由A1渣的058℃依次增加到A2渣的1068 ℃、A3渣的1077℃以及A4渣的1090℃,平均每增加1%AlO3,保护渣的熔化温度增加 65℃左右根据拟合控化温度T=0474529A出9=0-993☑应该为5e左右土。 A,O对熔化温度的影响丛文献24,和实际测试数速看,因渣系不同而有不同的效果,这 与化合物之间是否形成复杂氧化物或多其晶体相。能否分形成哪种复杂化合物?或 多乐共晶体?上 1100 Measured Fitting 录用 y=5.55r+1045 R=0.99345 1060 1050 AL,O (wt%) 圆34不同A1,O3含量保护渣的熔化温度 Fig.3-4 Melting temperature of mold fluxes with different Al2O;content 2.3结性能 2.3.1结晶温度 AO3对保护渣凝固结晶热力学影响的计算结果如图4所示。由图可知,渣中主要析出 相以Ca4Si2FzO,为主,此外还包括CasMgSi2Os、NCA2(是多种物质的固溶体,其包括 NazCaAlOs及NaNa.Ca)AlOs)以及Bred头出称之为“Bred”?没有中文名称?
以酸性氧化物存在,它会吸收 O 2-形成[AlO4] 5-,增加熔渣的网络结构复杂性,导致熔渣中 离子迁移速率减慢,转折温度降低。 1100 1150 1200 1250 1300 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Al2O3 =2% Al2O3 =4% Al2O3 =6% Al2O3 =8% (P a·s) T ( ) ℃ (a) 2 4 6 8 1100 1125 1150 1175 1200 1225 y = -12.15x+1217 R 2 = 0.99579 Measured Fitting Tbr ( ) ℃ Al2O3 (wt%) (b) 图 32 A1~A4 渣的基础性能:(a) 黏温曲线;(b) 转折温度【建议柱状图颜色与黏度曲线颜色分别对应】 Fig. 32 Basic properties of mold fluxes: (a) Viscosity-temperature curve; (b) Break temperature 2.2 熔化温度 A1~A4 渣的熔化温度测试结果见图 34。由图可知,Al2O3含量的增加会提高超高碱度保 护渣的熔化温度。超高碱度保护渣的熔化温度由 A1 渣的 1058 ℃依次增加到 A2 渣的 1068 ℃、A3 渣的 1077 ℃以及 A4 渣的 1090 ℃,平均每增加 1 % Al2O3,保护渣的熔化温度增加 6 5 ℃左右【根据拟合熔化温度 T 熔=1047+5.25*%Al2O3,R 2 =0.9937,应该为 5℃左右】。 Al2O3对熔化温度的影响从文献[2.4 ,7 ]和实际测试数据来看,因渣系不同而有不同的效果,这 与化合物之间是否形成复杂氧化物或多元共晶体相关。【能否分析形成哪种复杂化合物?或 多元共晶体?】 2 4 6 8 1050 1060 1070 1080 1090 1100 y = 5.55x+1045 R 2 = 0.99345 Measured Fitting Tm ( ) ℃ Al2O3 (wt%) 图 3 4 不同 Al2O3含量保护渣的熔化温度 Fig. 3 4 Melting temperature of mold fluxes with different Al2O3 content 2.3 结晶性能 2.3.1 结晶温度 Al2O3对保护渣凝固结晶热力学影响的计算结果如图 4 所示。由图可知,渣中主要析出 相以 Ca4Si2F2O7 为主,此外还包括 Ca3MgSi2O8、NCA2(是多种物质的固溶体,其包括 Na2CaAl4O8及 Na2(Na2,Ca)Al4O8)以及 Bred【为什么称之为“Bred”?有没有中文名称?】 录用稿件,非最终出版稿
(由白硅钙石CaMg(SiO.)4以及镁硅钙五Ca:Mgs(SiO4)4组成的固溶体)【Ca Mg(SiO4白硅 钙五,Ca.Me:(S04黄铁矿,能否有中文名称2土。随着A12O3含量增加,保护渣凝固结晶温 度呈现先降低后升高的趋势,开始结晶温度由1%A12O3含量的1147℃先下降到4%A1203 含量时的1131℃,然后逐渐增加到8%A1203含量时的1214℃C。与此同时,各物相的析出 顺序也发生变化,当Al2O3在4%含量内,Brd为第一析出相,而当Al2O3含量超过4 %,NCA,应为CA土成为了首个析出相,这表明各物相之间存在竞争析出的规律。渣中 Bred的析出温度呈下降趋势,表明AlO含量的增加会抑制Bred相的析出,而渣中 Ca:MgSi2O%及NCA2的析出温度却呈升高趋势,表明AlO3有利于该两相的析出。占渣中析 出相主要部分的CSi2FzO,的析出温度较复杂,但变化趋势与熔渣整体的析出温度一致, 呈现先降低后增加的趋势,由1%Al203含量的1123C先下降到4%Al203含量的1103 ℃,然后增加到8%A1O3含量时的1116℃,熔渣整体结晶温度的变化范围不大。此外, CaSi2F2O,占比也随渣中Al203含量的增加呈增加的趋势,由35.27%增加到3087%。 100 100 -Liquid Slag (a) 一L.iquid Slag (b) -CaSizF2O ·CaSi2F,0 80 -Ca:MgSi,Os 80 -Ca MgSi,0 NCA2 9 -NCA2 ◆-Bred Bred 20 800 900 1000 1100 1200 1000 1100 1200 1300 100 -Liguid Slag 一Slag (d) --Ca 80 -Ca;MgSi,O 一Ca:MgSi,0 NCA2 -NCA2 Bred -Bred 20 高件 0上 80 1100 1200 1300 800 900 1000 1100 1200 1300 r(c I00 100 (e) -Liquid Slag (① ◆-CaSi2Fz0 CaMgSiO Ca:MgSi2Os T一NA2 ◆一Bred -Bred 60 40 20 0 800 900 1000 1100 1200 1300 800 900 1000 1100 1200 1300 T○
(由白硅钙石 Ca7Mg(SiO4)4以及镁硅钙石 Ca3Mg5(SiO4)4组成的固溶体)【Ca7Mg(SiO4)4白硅 钙石,Ca3Mg5(SiO4)4黄铁矿,能否有中文名称?】。随着 Al2O3含量增加,保护渣凝固结晶温 度呈现先降低后升高的趋势,开始结晶温度由 1 % Al2O3含量的 1147 ℃先下降到 4 % Al2O3 含量时的 1131 ℃,然后逐渐增加到 8 % Al2O3含量时的 1214 ℃。与此同时,各物相的析出 顺序也发生变化,当 Al2O3 在 4 %含量内,Bred 为第一析出相,而当 Al2O3 含量超过 4 %,NCA2【应为 NCA2】成为了首个析出相,这表明各物相之间存在竞争析出的规律。渣中 Bred 的析出温度呈下降趋势,表明 Al2O3 含量的增加会抑制 Bred 相的析出,而渣中 Ca3MgSi2O8及 NCA2的析出温度却呈升高趋势,表明 Al2O3有利于该两相的析出。占渣中析 出相主要部分的 Ca4Si2F2O7的析出温度较复杂,但变化趋势与熔渣整体的析出温度一致, 呈现先降低后增加的趋势,由 1 % Al2O3 含量的 1123 ℃先下降到 4 % Al2O3 含量的 1103 ℃,然后增加到 8 % Al2O3含量时的 1116 ℃,熔渣整体结晶温度的变化范围不大。此外, Ca4Si2F2O7占比也随渣中 Al2O3含量的增加呈增加的趋势,由 35.27 %增加到 50.87 %。 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Liquid Slag Ca4 Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T ( ) ℃ (a) 800 900 1000 1100 1200 1300 0 20 40 60 80 100 (b) Liquid Slag Ca4 Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T ( ) ℃ 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Liquid Slag (c) Ca4 Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T (℃) 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Slag Ca4 Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T (℃) (d) 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Slag Ca4 Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T (℃) (e) 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Liquid Slag Ca4Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T (℃) (f) ( ( ( ( ( 录用稿件,非最终出版稿
100 100 ·一Liquid Slag (g) -Liquid Slag ( ·-CaSi2F,0 ◆CaSi2F,02 形 一Ca,Mgsi,0, 80 Ca:MgSi,O -NCA2 -NCA2 Bred 60 60 40 0 ■ 20 20 0 800 900 1000110012001300 800 900 10001100 12001300 rec T(G 圆45不同Al,O含量保护渣凝固结晶计算结果:(a)Al0=1%,(b)Al0,=2%,(C)Al.03%;(d)Al0=4%, (e)Al20=5%:(fDA1203=6%:(g)Al203=7%:(h)Al2O=8% Fig.4-5 Calculation results of solidification crystallization of mold fluxes with different Al2O3 content:(a)Al2O3=1%:(b)Al2O3=2%;(c)Al2O3=3%;(d)Al2O3=4%;(e) A1O5%:fAl03=6%,(g) Al2O=7%:(h)Al203=8% 图S6是渣中不同AIO,含量保护渣采用图1所示的高温原位结晶性能测试仪的CCT测 试结果。由图可知,随着AO,含量增加,超高碱度保护渣的开始结晶温度呈下降趋势,这 表明渣中AO,的加入会抑制超高碱度保护渣的结晶性能。具体表现为:在1℃s时,超高 碱度保护渣的开始结晶温度由2%A1l03含量的188下降到4%A1l03的1168℃,然后 下降到6%A103的1141℃,最后下降到%Al03的1119℃上y二x± 1212.5R=09970。在3℃/s时,由2%A120含量渣的1159℃下降到4%Al203的1147 ℃,然后下降到6%Al03的1116℃s,最后不降到8%Al,03的1093℃。平均每增加1% A1O,含量,超高碱度保护渣的始结晶温度下降11℃左右y二出45x± H86=0972土,这与AlO,含量对超高碱度保护渣T影响规律相一致(每增加1% A12O3含量,T下降12C左右)。由图2、图3所述A1O3对熔化温度及黏度的影响趋势可知, 一方面由于Al2O3增加了熔渣的黏度,减缓了结晶的形成过程:另一方面A1O,使渣的熔化 温度增加,提高了熔渣结晶过程中的过冷度,从而有利于熔渣的结晶,综合表现为渣的开 用稿 始结晶温度下降。: 1300 -A1:A203=2% 12206) i(R2-99552 ·A2:A203=4% 1250 1200 2(R2-096535 3● Fitting(R2-0.96279 +A3:A203=6% -A4:A203=8% 1180 1200 O 1160 115 人1140 10 1s 1120 1050 2℃5 1100 3G9 1080L 100 2 10 100 1000 4 6 Time(s) Al,03(wt%) 圆56不同Al,O,含量保护渣CCT曲线与开始结晶温度:(a)不同AQ含量保护渣CCT曲线:(b)丕 同A,0含量保护渣开始结晶温度 Fig.5-6 CCT curves and initial crystallization temperature of mould fluxes with different Al2O Mee content:(a) CCT curyes of mold fluxes with different Al2O:content:(b)Initial crystallization temperature of mold fluxes with different Al2O:content
800 900 1000 1100 1200 1300 0 20 40 60 80 100 Liquid Slag Ca4Si2F2O7 Ca3MgSi2O8 NCA2 Bred Mass percent (%) T (℃) (g) 800 900 1000 1100 1200 1300 0 20 40 60 80 100 Liquid Slag Ca4Si2F2O7 Ca3MgSi2O8 NCA2 Mass percent (%) T (℃) (h) 图 4 5 不同 Al2O3含量保护渣凝固结晶计算结果:(a) Al2O3=1%; (b) Al2O3=2%; (c) Al2O3=3%; (d) Al2O3=4%; (e) Al2O3=5%; (f) Al2O3=6%; (g) Al2O3=7%; (h) Al2O3=8% Fig. 4 5 Calculation results of solidification crystallization of mold fluxes with different Al2O3 content: (a) Al2O3=1%; (b) Al2O3=2%; (c) Al2O3=3%; (d) Al2O3=4%; (e) Al2O3=5%; (f) Al2O3=6%; (g) Al2O3=7%; (h) Al2O3=8% 图 56 是渣中不同 Al2O3含量保护渣采用图 1 所示的高温原位结晶性能测试仪的 CCT 测 试结果。由图可知,随着 Al2O3含量增加,超高碱度保护渣的开始结晶温度呈下降趋势,这 表明渣中 Al2O3的加入会抑制超高碱度保护渣的结晶性能。具体表现为:在 1 /s ℃ 时,超高 碱度保护渣的开始结晶温度由 2 % Al2O3含量的 1188 ℃下降到 4 % Al2O3的 1168 ℃,然后 下 降 到 6 % Al2O3 的 1141 ℃ , 最 后 下 降 到 8 % Al2O3 的 1119 ℃ 【 y = -11.7x + 1212.5,R 2 =0.9970】。在 3 /s ℃ 时,由 2 % Al2O3含量渣的 1159 ℃下降到 4 % Al2O3的 1147 ℃,然后下降到 6 % Al2O3的 1116 /s ℃ ,最后下降到 8 % Al2O3的 1093 ℃。平均每增加 1 % Al2O3 含 量 , 超 高 碱 度 保 护 渣 的 开 始 结 晶 温 度 下 降 11 ℃ 左 右 【 y = -11.45x + 1186,R 2 =0.9752】,这与 Al2O3含量对超高碱度保护渣 Tbr影响规律相一致(每增加 1 % Al2O3含量,Tbr下降 12℃左右)。由图 2、图 3 所述 Al2O3对熔化温度及黏度的影响趋势可知, 一方面由于 Al2O3增加了熔渣的黏度,减缓了结晶的形成过程;另一方面 Al2O3使渣的熔化 温度增加,提高了熔渣结晶过程中的过冷度,从而有利于熔渣的结晶,综合表现为渣的开 始结晶温度下降。 10 100 1000 1000 1050 1100 1150 1200 1250 1300 (a) A1:Al2O3 =2% A2:Al2O3 =4% A3:Al2O3 =6% A4:Al2O3 =8% 3 /s ℃ 2 /s ℃ T ( ) ℃ Time (s) 1 /s ℃ 2 4 6 8 1080 1100 1120 1140 1160 1180 1200 1220 1 /s ℃ Fitting (R 2 = 0.99552) 2 /s ℃ Fitting (R 2 = 0.96535) 3 /s ℃ Fitting (R 2 = 0.96279) Tm ( ) ℃ Al2O3 (wt%) (b) 图 5 6 不同 Al2O3含量保护渣 CCT 曲线与开始结晶温度:(a)不同 Al2O3含量保护渣 CCT 曲线;(b)不 同 Al2O3含量保护渣开始结晶温度 Fig. 5 6 CCT curves and initial crystallization temperature of mould fluxes with different Al2O3MgO content: (a) CCT curves of mold fluxes with different Al2O3 content; (b) Initial crystallization temperature of mold fluxes with different Al2O3 content ( ( 录用稿件,非最终出版稿
2.3.2结晶速率 A1~A4渣的结晶速率及结晶时间见图Z。随着A12O3含量的增加,超高碱度保护渣结 晶所用时间增加,平均结晶速率减小,进一步表明AO3抑制了保护渣的结晶过程。具体表 现为:在1Cs,结晶时间由2%Al2O3的28.5s依次增加到4%Al203的52s,6%A1203的 67s,8%Al203的77s:而平均结晶速率由2%A103含量的0.030s1依次相应减小到0.016 s1,0.013s,0.011s。 80 --1C⅓ (a) 0.07b) -■-1C⅓ ◆-2Cs ·-2C% 70 -▲-3C⅓ ▲-3C/⅓ 0.06 60 0.05 40 30 0.03 20 0.02 0.01 4 6 AL,0,(wt%) 1,03(wt%) ■6-1不同A1,0,含量保护渣的结晶时间与平均结晶速率 (不同AlO,含量保护渣结晶时间;(b)不同 A12O含量平均结晶速率 Fig.6-7 Crystallization time and average crystallization rate of mold fluxes with different Al2O3 content:(a)Crystallization time of mold flux with different Al2O3 content;(b)Average crystallization rate of different Al2O;content 2.3.3结晶矿相 图8是将A1~A4保护渣熔融后取出置于室温环境空冷后用相机拍照所得的冷凝断面, 所得冷凝断面知图7所示。从图8中可以看出,当A1O3含量从2%增加到8%,保护渣冷 凝断面的晶体比例逐渐减少。 cm Icm Icm Icm 78冷凝断面:(a)A12O3=2%:(b)Al20=4%:(c)Al20=6%:(d)Al20=8% Fig.87 Condensation section of mold fluxes:(a)Al2O3=2%:(b)Al2O3=4%:(c)Al2O:=6%:(d)Al2O3=8% 图89是A1~A4渣断口晶体部分的XRD测试图谱。随着A12O,增加,超高碱度保护渣中 析出相种类并没有发生改变,只有CSi2F2O,一种物相,而结合图6Z.分析可知,随着 Al2O3的增加熔渣的结晶速率都呈下降趋势,这是高碱性条件下AO,作为酸性氧化物能促 进玻璃化所致
2.3.2 结晶速率 A1~A4 渣的结晶速率及结晶时间见图 67。随着 Al2O3含量的增加,超高碱度保护渣结 晶所用时间增加,平均结晶速率减小,进一步表明 Al2O3抑制了保护渣的结晶过程。具体表 现为:在 1 /s ℃ ,结晶时间由 2 % Al2O3的 28.5 s 依次增加到 4 % Al2O3的 52 s,6 % Al2O3的 67 s,8 % Al2O3的 77 s;而平均结晶速率由 2 % Al2O3含量的 0.030 s-1依次相应减小到 0.016 s -1,0.013 s-1,0.011s-1。 2 4 6 8 10 20 30 40 50 60 70 80 1 /s ℃ 2 /s ℃ 3 /s ℃ Time (s) Al2O3 (wt%) (a) 2 4 6 8 0.01 0.02 0.03 0.04 0.05 0.06 0.07 1 /s ℃ 2 /s ℃ 3 /s ℃ V (s -1 ) Al2O3 (wt%) (b) 图 6 7 不同 Al2O3含量保护渣的结晶时间与平均结晶速率:(a) 不同 Al2O3含量保护渣结晶时间;(b) 不同 Al2O3含量平均结晶速率 Fig. 6 7 Crystallization time and average crystallization rate of mold fluxes with different Al2O3 content: (a) Crystallization time of mold flux with different Al2O3 content; (b) Average crystallization rate of different Al2O3 content 2.3.3 结晶矿相 图 8 是将 A1~A4 保护渣熔融后取出置于室温环境空冷后用相机拍照所得的冷凝断面, 所得冷凝断面如图 7 所示。从图 78 中可以看出,当 Al2O3含量从 2 %增加到 8 %,保护渣冷 凝断面的晶体比例逐渐减少。 图 7 8 冷凝断面:(a) Al2O3=2%; (b) Al2O3=4%; (c) Al2O3=6%; (d) Al2O3=8% Fig. 87 Condensation section of mold fluxes: (a) Al2O3=2%; (b) Al2O3=4%; (c) Al2O3=6%; (d) Al2O3=8% 图 89 是 A1~A4 渣断口晶体部分的 XRD 测试图谱。随着 Al2O3增加,超高碱度保护渣中 析出相种类并没有发生改变,只有 Ca4Si2F2O7 一种物相,而结合图 67 分析可知,随着 Al2O3的增加熔渣的结晶速率都呈下降趋势,这是高碱性条件下 Al2O3作为酸性氧化物能促 进玻璃化所致。 ( ( (b) (c)(d) (a) 录用稿件,非最终出版稿
(a) 2000(b) 2000 v—Ca,Si,F0, -Ca Si,F,O. 1600 1500 1000 800 500 0 1020 4050 60 7080 90 10 20 40 50 60 8090 20() 20() 800(c) 1400 -Ca Si,F,O, (d) Ca Si,F,O. 1200 600 1000 (n'e)S 400 60 200 400 200 0 10 20 30 4050 60 7080 % 30 4 708090 20(9 208 ■8A1~A4保护渣的XRD图:(a)Al0=2%AO 4%,(c)Al0=6%,(dAl0=8% Fig.98 XRD of mold fluxes:(a)Al2O;=2%:(b)A1O:=4%:(c)Al2O:=6%:(d)Al2O;=8% A1~A4渣的扫描电镜图及能谱分析果如图910及表2所示。由背散射结果分析可知 渣中只有一种析出相,结合能谱分析中的元素组成可以确认该析出相为枪晶石,这与XD 测试结果相符合。但在A4渣的“3号”区域,除上述四种元素外,还另外发现了 Na、Mg、A1(三种元素质量的和为15%),通过对比A4渣的不同放大倍数背散射照片发 现,3号点处并未出现与其他部纷相似的“细长型”枪晶石晶体,并且整个视场中枪晶石 数量明显减少,这说明渣中,O的增加会抑制枪晶石形成。此外,通过背散射观察发现, 录用 随着渣中A1O,的增如出枪晶石的尺寸有明显增加的趋势
10 20 30 40 50 60 70 80 90 0 400 800 1200 1600 2000 ss s s s s s s s s Intensity (a.u.) 2θ (º) s Ca4 Si2 F s 2O7 (a) 10 20 30 40 50 60 70 80 90 0 500 1000 1500 2000 (b) s Ca4 Si2 F2O7 s s s s s ss Intensity (a.u.) 2θ(º) s 10 20 30 40 50 60 70 80 90 0 200 400 600 800 (c) 2θ(º) s Ca4 Si2 F2O7 s s s s s s s s s s In s tensity (a.u.) s 10 20 30 40 50 60 70 80 90 0 200 400 600 800 1000 1200 1400 (d) s Ca4 Si2 F2O7 s s s s s s s s s Intensity (a.u.) 2θ(º) 图 98 A1~A4 保护渣的 XRD 图:(a) Al2O3=2%; (b) Al2O3=4%; (c) Al2O3=6%; (d) Al2O3=8% Fig. 98 XRD of mold fluxes: :(a) Al2O3=2%; (b) Al2O3=4%; (c) Al2O3=6%; (d) Al2O3=8% A1~A4 渣的扫描电镜图及能谱分析结果如图 910 及表 2 所示。由背散射结果分析可知 渣中只有一种析出相,结合能谱分析中的元素组成可以确认该析出相为枪晶石,这与 XRD 测试结果相符合。但在 A4 渣的“3 号”区域,除上述四种元素外,还另外发现了 Na、Mg、Al(三种元素质量的和为 15 %),通过对比 A4 渣的不同放大倍数背散射照片发 现, 3 号点处并未出现与其他部分相似的“细长型”枪晶石晶体,并且整个视场中枪晶石 数量明显减少,这说明渣中 Al2O3的增加会抑制枪晶石形成。此外,通过背散射观察发现, 随着渣中 Al2O3的增加,析出枪晶石的尺寸有明显增加的趋势。 ( ( ( ( ( 录用稿件,非最终出版稿
6业护电扫图42044 图保流镜描% M HV. 03= A6@A8 % 0= % Fig. 10 9 1m SEM MAG:1.02 km VEGATLUH 自e七自Be gG:1的 IEM MAG:1.00 KX SEM images of mold fluxes:(a)Al 26/b)AO,=4%,(C)A0,=6%,(dAl0=8% 表2保护遣鲍着分析精果(wt%) Table 2 Results of energy spectrum analysis of mold fluxes(wt%) 元素 录用 渣号 谱图 Ca F Na Mg AI 总和 100.0 31.99 17.54 0 100.0 16.33 30.42 12.48 0 100.0 6.27 15.6 35.49 12.65 0 100.0 37.6 16.1 33.0 13.3 0 A2 100.0 2 38.9 15.1 30.4 15.6 0 39.2 15.8 31.2 13.7 99.90 A3 100.0 38.5 14.94 31.39 15.17 0 41.26 15.05 29.05 14.65 100.0
图 9 10 保 护 渣 电 镜 扫 描 图: (a) Al 2O3= 2 %; (b) Al 2O3= 4 %; (c) Al 2O3= 6 %; (d) Al 2O3= 8 % Fig. 10 9 SEM images of mold fluxes: (a) Al2O3=2%; (b) Al2O3=4%; (c) Al2O3=6%; (d) Al2O3=8% 表 2 保护渣能谱分析结果(wt%) Table 2 Results of energy spectrum analysis of mold fluxes (wt%) 渣号 谱图 元素 Ca Si O F Na Mg Al 总和 A1 1 35.56 14.91 31.99 17.54 / / 100.0 0 2 40.77 16.33 30.42 12.48 / / 100.0 0 3 36.27 15.6 35.49 12.65 / / 100.0 0 A2 1 37.6 16.1 33.0 13.3 / / 100.0 0 2 38.9 15.1 30.4 15.6 / / 100.0 0 3 39.2 15.8 31.2 13.7 / / 99.90 A3 1 38.5 14.94 31.39 15.17 / / 100.0 0 2 41.26 15.05 29.05 14.65 / / 100.0 0 (a ) (b (d(c) ) 录用稿件,非最终出版稿