正在加载图片...
1[39]J.Yang.G.Liu,M.Avdeev,et al.Ultrastable all-solid-state sodium rechargeable batteries.ACS Energy 2Le1ers,2020,5:2835 3[40]J.A.S.Oh,J.Sun,M.Goh,et al.A robust solid-solid Interface using sodium-tin alloy modified metallic 4 sodium anode paving way for all-solid-state battery.Advanced Energy Materials,2021,11:2101228 5[41]P.Liu,H.Hao,H.Celio,et al.Multifunctional separator allows stable cycling of potassium metal anodes and 6 of potassium metal batteries.Advanced Energy Materials,https://doi.org/10.1002/adma.202105855 742]J.Cui,A.Wang,G.Li,et al.Composite sodium metal anodes for practical applications.Journal of Materials 8 Chemistry A,2020,8:15399 9[43]S.Liu,S.Tang,X.Zhang,et al.Porous Al current collector for dendrite-free na metal anodes.Nano letters, 10 2017.17:5862 11[44]W.S.Xiong.Y.Xia,Y.Jiang,et al.Highly conductive and robust three-dimensional host with excellent 12 alkali metal infiltration boosts ultrastable lithium and sodium metal ACS Applied 13 Materials Interfaces,2018,10:21254 14[45]X.Y.Zheng,W.J.Yang.Z.Q.Wang,et al.Embedding a percolated dual-conductive skeleton with high 15 sodiophilicity toward stable sodium metal anodes.Nano Energy,2020,69:104387 16[46]X.Lu,J.M.Luo,E.Matios,et al.Enabling high-performance sodium metal anodes via A sodiophilic 17 structure constructed by hierarchical Sb2MoO microspheres.Nano Energv,2020,69:104446 18[47]Y.Y.Xie,J.X.Hu,Z.X.Han,et al.Encapsulating sodium deposition into carbon rhombic dodecahedron 19 guided by sodiophilic sites for dendrite-free Na metal batteries Energy Storage Materials,2020,30:1 20[48]B.Sun,P.Xiong.U.Maitra,et al.Design strategies to enable the efficient use of sodium metal anodes in 21 high-energy batteries.Advanced Materials,2020,321 22[49]Y.Zhao,K.R.Adair and X.Sun.Recent developments and insights into the understanding of Na metal 23 anodes for Na-metal batteries.Energy Environmental Science,2018,11:2673 24[50]J.Cui,A.Wang.G.Li,et al.Correction:Composite sodium metal anodes for practical applications.Journal 25 of Materials Chemistry A,2020,8:16024 26[51]L.Fan and X.Li.Recent advances in effective protection of sodium metal anode.Nano Energy,2018,53, 27630 11 28[52]F.Wu,J.Zhou,R.Luo,et al.Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal 29 anode.Energy Storage Materials,2019,22:376 30[53]H.Wang,C.WangE Matios et al.Critical role of ultrathin graphene films with tunable thickness in 31 enabling highly stable sodium metal anodes.Nano Leters,2017,17:6808 32154]A.Wang,X.Hd P.Tang.et al.Processable and moldable sodium-metal anodes.Angewandte Chemie 33 International Edition,2017,56:11921 34155]Y.Le Lee.et al.Fluoroethylene carbonate-based electrolyte with I M sodium 35 bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes.ACS applied materials 36 in1 erfaces,.2018,10:15270 37[56]K.Yan,S.Zhao,J.Zhang,et al.Dendrite-free sodium metal batteries enabled by the release of contact strain 38 on flexible and sodiophilic matrix.Nano letters,2020,20:6112 39[57]W.Liu,P.Li,W.Wang,et al.Directional flow-aided sonochemistry yields graphene with tunable defects to 40 provide fundamental insight on sodium metal plating behavior.ACS Nano,2018,12:12255 41[58]H.Wang.C.Wang.E.Matios,et al.Enabling ultrahigh rate and capacity sodium metal anodes with 42 lightweight solid additives.Energy Storage Materials,2020,32:244 43[59]C.Bao,B.Wang,Y.Xie,et al.Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a 44 Stable Na Metal Anode.ACS Sustainable Chemistry Engineering,2020,8:5452[39] J. Yang, G. Liu, M. Avdeev, et al. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Letters, 2020, 5: 2835 [40] J. A. S. Oh, J. Sun, M. Goh, et al. A robust solid-solid Interface using sodium-tin alloy modified metallic sodium anode paving way for all-solid-state battery. Advanced Energy Materials, 2021, 11: 2101228 [41] P. Liu, H. Hao, H. Celio, et al. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Advanced Energy Materials, https://doi.org/10.1002/adma.202105855 [42] J. Cui, A. Wang, G. Li, et al. Composite sodium metal anodes for practical applications. Journal of Materials Chemistry A, 2020, 8: 15399 [43] S. Liu, S. Tang, X. Zhang, et al. Porous Al current collector for dendrite-free na metal anodes. Nano letters, 2017, 17: 5862 [44] W. S. Xiong, Y. Xia, Y. Jiang, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes. ACS Applied Materials & Interfaces, 2018, 10: 21254 [45] X. Y. Zheng, W. J. Yang, Z. Q. Wang, et al. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy, 2020, 69: 104387 [46] X. Lu, J.M. Luo, E. Matios, et al. Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69: 104446 [47] Y. Y. Xie, J. X. Hu, Z. X. Han, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Materials, 2020, 30: 1 [48] B. Sun, P. Xiong, U. Maitra, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Advanced Materials, 2020, 32: 1903891 [49] Y. Zhao, K. R. Adair and X. Sun. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy & Environmental Science, 2018, 11: 2673 [50] J. Cui, A. Wang, G. Li, et al. Correction: Composite sodium metal anodes for practical applications. Journal of Materials Chemistry A, 2020, 8: 16024 [51] L. Fan and X. Li. Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 53, 630 [52] F. Wu, J. Zhou, R. Luo, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Energy Storage Materials, 2019, 22: 376 [53] H. Wang, C. Wang, E. Matios, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Letters, 2017, 17: 6808 [54] A. Wang, X. Hu, H. Tang, et al. Processable and moldable sodium-metal anodes. Angewandte Chemie International Edition, 2017, 56: 11921 [55] Y. Lee, J. Lee, J. Lee, et al. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS applied materials & interfaces, 2018, 10: 15270 [56] K. Yan, S. Zhao, J. Zhang, et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano letters, 2020, 20: 6112 [57] W. Liu, P. Li, W. Wang, et al. Directional flow-aided sonochemistry yields graphene with tunable defects to provide fundamental insight on sodium metal plating behavior. ACS Nano, 2018, 12: 12255 [58] H. Wang, C. Wang, E. Matios, et al. Enabling ultrahigh rate and capacity sodium metal anodes with lightweight solid additives. Energy Storage Materials, 2020, 32: 244 [59] C. Bao, B. Wang, Y. Xie, et al. Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode. ACS Sustainable Chemistry & Engineering, 2020, 8: 5452 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有