◆SNEB ◆FNEB 10 ◆FNEB 0 MLE 10 .-MLE -MLE (oas) -EZ8 -EZB .UPE ...UPE ..UPE -ART -ART -ART o 10 10 10 10 0.020.040.060.08 0.1 0.02.0.040.060.08 0.1 0 0.020.040.06 0.08 0.1 Confidence Interval B Confidence Interval B Confidence Interval B (a)a=99.9% (b)a=99% (c)a=95% Figure 13:Time vs.B 0.99g 0.98 0.99 0.999 0.99 0.98 0999 0.99 ¥0.97 0.9992 是0.992 0.96 .99 0.99 0.9 10 10 104 10 10 103 umberftag10 10 10 10 104 Number of tags t 10 10 Number of tags t (a)a=99.9%,3=0.1% (b)a=99%,B=1% (c)a=95%.B=5% Figure 14:Actual reliability [3]EPCGlobal Inc.Radio-Frequency Identity Protocols and applications.IEEE Pervasive Computing,5:22-24. Class-1 Generation-2 UHF RFID Protocol for 2006. Communications at 860 MHz-960 MHz,1.2.0 edition, [12A.Nemmaluri,M.D.Corner,and P.Shenoy. 2008. Sherlock:Automatically locating objects for humans. [4 K.Finkenzeller.RFID Handbook:Fundamentals and In Proc.MobiSys,pages 187-198,2008. Applications in Contactless Smart Cards,Radio [13 L.M.Ni.Y.Liu,Y.C.Lau.and A.P.Patil Frequency Identification and Near-Field Landmarc:Indoor location sensing using active RFID. Communication.Wiley,2010. Wireless networks,10:701-710.2004. [5]P.Flajolet and G.N.Martin.Probabilistic counting 14 C.Qian,H.Ngan,and Y.Liu.Cardinality estimation algorithms for data base applications.Journal of for large-scale RFID systems.In Proc.6th IEEE Computer and System Sciences,31(2):182-209,1985 PerCom,pages 30-39,2008. [6]H.Han,B.Sheng,C.C.Tan,Q.Li,W.Mao,and [15]M.Roberti.A 5-cent breakthrough.RFID Journal, S.Lu.Counting RFID tags efficiently and 5(6),2006. anonymously.In Proc.IEEE INFOCOM.2010. 16 P.Semiconductors.SL2 ICS11 I.Code UID Smart [7]M.Kodialam and T.Nandagopal.Fast and reliable Label IC Functional Specification Datasheet estimation schemes in RFID systems.In Proc.12th www.advanide.com/datasheets/sl2ics11.pdf,2004. MobiCom,pages 322-333,2006. [17]V.Shah-Mansouri and V.W.Wong.Cardinality [8]M.Kodialam,T.Nandagopal,and W.C.Lau. estimation in RFID systems with multiple readers.In Anonymous tracking using RFID tags.In Proc.IEEE Proc.IEEE GLOBECOM.2009. INFOCOM.2007. [18]H.Vogt.Efficient object identification with passive [9]C.H.Lee and C.W.Chung.Efficient storage scheme RFID tags.Pervasive Computing,2414:98-113,2002. and query processing for supply chain management [19]C.Wang,H.Wu,and N.-F.Tzeng.RFID-based 3-d using RFID.In Proc.ACM SIGMOD,pages 291-302. positioning schemes.In Proc.IEEE INFOCOM,pages 2008. 1235-1243,2007. [10]T.Li,S.Wu,S.Chen,and M.Yang.Energy efficient [20 B.Zhen,M.Kobayashi,and M.Shimizu.Framed algorithms for the RFID estimation problem.In Proc. ALOHA for multiple RFID objects identification. IEEE INFOCOM.2010. IEICE Transactions on Communications,88:991-999, [11]B.Nath,F.Reynolds,and R.Want.RFID technology 2005. 3760 0.02 0.04 0.06 0.08 0.1 100 102 104 Confidence Interval β Estimation time (sec) FNEB MLE EZB UPE ART (a) α = 99.9% 0 0.02 0.04 0.06 0.08 0.1 100 102 104 Confidence Interval β Estimation time (sec) FNEB MLE EZB UPE ART (b) α = 99% 0 0.02 0.04 0.06 0.08 0.1 100 102 104 Confidence Interval β Estimation time (sec) FNEB MLE EZB UPE ART (c) α = 95% Figure 13: Time vs. β 102 103 104 105 106 0.999 0.9992 0.9994 0.9996 0.9998 1 Number of tags t Actual Reliability (AR) (a) α = 99.9%, β = 0.1% 102 103 104 105 106 0.99 0.992 0.994 0.996 0.998 1 Number of tags t Actual Reliability (AR) (b) α = 99%, β = 1% 102 103 104 105 106 0.95 0.96 0.97 0.98 0.99 1 Number of tags t Actual Reliability (AR) (c) α = 95%, β = 5% Figure 14: Actual reliability [3] EPCGlobal Inc. Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz–960 MHz, 1.2.0 edition, 2008. [4] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. Wiley, 2010. [5] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2):182–209, 1985. [6] H. Han, B. Sheng, C. C. Tan, Q. Li, W. Mao, and S. Lu. Counting RFID tags efficiently and anonymously. In Proc. IEEE INFOCOM, 2010. [7] M. Kodialam and T. Nandagopal. Fast and reliable estimation schemes in RFID systems. In Proc. 12th MobiCom, pages 322–333, 2006. [8] M. Kodialam, T. Nandagopal, and W. C. Lau. Anonymous tracking using RFID tags. In Proc. IEEE INFOCOM, 2007. [9] C. H. Lee and C. W. Chung. Efficient storage scheme and query processing for supply chain management using RFID. In Proc. ACM SIGMOD, pages 291–302, 2008. [10] T. Li, S. Wu, S. Chen, and M. Yang. Energy efficient algorithms for the RFID estimation problem. In Proc. IEEE INFOCOM, 2010. [11] B. Nath, F. Reynolds, and R. Want. RFID technology and applications. IEEE Pervasive Computing, 5:22–24, 2006. [12] A. Nemmaluri, M. D. Corner, and P. Shenoy. Sherlock: Automatically locating objects for humans. In Proc. MobiSys, pages 187–198, 2008. [13] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Landmarc: Indoor location sensing using active RFID. Wireless networks, 10:701–710, 2004. [14] C. Qian, H. Ngan, and Y. Liu. Cardinality estimation for large-scale RFID systems. In Proc. 6th IEEE PerCom, pages 30–39, 2008. [15] M. Roberti. A 5-cent breakthrough. RFID Journal, 5(6), 2006. [16] P. Semiconductors. SL2 ICS11 I.Code UID Smart Label IC Functional Specification Datasheet www.advanide.com/datasheets/sl2ics11.pdf, 2004. [17] V. Shah-Mansouri and V. W. Wong. Cardinality estimation in RFID systems with multiple readers. In Proc. IEEE GLOBECOM, 2009. [18] H. Vogt. Efficient object identification with passive RFID tags. Pervasive Computing, 2414:98–113, 2002. [19] C. Wang, H. Wu, and N.-F. Tzeng. RFID-based 3-d positioning schemes. In Proc. IEEE INFOCOM, pages 1235–1243, 2007. [20] B. Zhen, M. Kobayashi, and M. Shimizu. Framed ALOHA for multiple RFID objects identification. IEICE Transactions on Communications, 88:991–999, 2005. 376