正在加载图片...
3.2.1 Boundary Conditions Dirichlet Problem ur()=on =- Fo(arier Neumann Problem r(a) a mz=m1如mF|- a(x)drx∈r Neumann Problem generates Hypersingular Integral 3.2.2 Dirichlet Problem 2nd Kind SLIDE 13 dur(E) (x) 3.2.3 Radiation Condition SLIDE 14 nr‖-‖ d→O(引-2) Add Extra Term to slow decay 0 4 Greens Theorem Approach 4.1 Green's Second Identity SLIDE 15 Aluon-uomarl Easy to implement any boundary conditions3.2.1 Boundary Conditions Slide 12 Dirichlet Problem uΓ(x) =  Γ ∂ ∂nx 1 x − x  σ(x )dΓ x ∈ Γ Neumann Problem ∂uΓ(x) ∂nx = ∂ ∂nx  Γ ∂ ∂nx 1 x − x σ(x )dΓ x ∈ Γ Neumann Problem generates Hypersingular Integral 3.2.2 Dirichlet Problem 2nd Kind! Slide 13 ∂uΓ(x) ∂nx = 2πσ(x ) +  Γ ∂ ∂nx 1 x − x  σ(x )dΓ 3.2.3 Radiation Condition Slide 14 limx→∞u(x) =  Γ ∂ ∂nx 1 x − x  σ(x )dΓ → O(x−2) Add Extra Term to slow decay u(x) =  Γ ∂ ∂nx 1 x − x σ(x )dΓ + αG(x∗) x∗  Ω 4 Green’s Theorem Approach 4.1 Green’s Second Identity Slide 15  Ω u∇2w − w∇2u dΩ =  Γ  w ∂u ∂n − u ∂w ∂n dΓ  Now let w = 1 x−x 2πu(x) =  Γ  1 x − x  ∂u ∂n − u ∂ ∂nx 1 x − x  dΓ  Easy to implement any boundary conditions! 4
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有