当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 24 notes

资源类别:文库,文档格式:PDF,文档页数:5,文件大小:70.15KB,团购合买
Laplace Problems Exterior Radiation Condition Green’s function Ansatz or Indirect Approach Single and Double Layer Potentials First and Second Kind Equations Greens Theorem Approach First and Second Kind Equations
点击下载完整版文档(PDF)

Numerical methods for pdes Integral Equation Methods, Lecture 4 Formulating Boundary Integral equat Notes by Suvranu De and J. White April 30, 2003

Numerical Methods for PDEs Integral Equation Methods, Lecture 4 Formulating Boundary Integral Equations Notes by Suvranu De and J. White April 30, 2003

1 Outline Laplace problems Exterior Radiation Condition Ansatz or Indirect Approach Single and Double layer Potentials and Second Kind Eq Greens Theorem Approach First and Second Kind equations 2 3-D Laplace problems 2.1 Differential equatior SLIDE 2 Laplace's equation in 3-D 02u(),02u(2),02u() ay 2 where ∈g2 and s is bounded by t. 2.2 Boundary Conditions sLide 3 Dirichlet Condition (x)x∈r Neumann Condition du(a) dur(a) x∈T PLUS 2.2.1 Radiation Condition SLIDE 4 lim u(x)→0 1im→x3(→O(‖-1)

1 Outline Slide 1 Laplace Problems Exterior Radiation Condition Green’s function Ansatz or Indirect Approach Single and Double Layer Potentials First and Second Kind Equations Greens Theorem Approach First and Second Kind Equations 2 3-D Laplace Problems 2.1 Differential Equation Slide 2 Laplace’s equation in 3-D ∇2u(x) = ∂2u(x) ∂x2 + ∂2u(x) ∂y2 + ∂2u(x) ∂z2 = 0 where x = x, y, z ∈ Ω and Ω is bounded by Γ. 2.2 Boundary Conditions Slide 3 Dirichlet Condition u(x) = uΓ(x) x ∈ Γ OR Neumann Condition ∂u(x) ∂nx = ∂uΓ(x) ∂nx x ∈ Γ PLUS A Radiation Condition 2.2.1 Radiation Condition Slide 4 The Radiation Condition limx→∞u(x) → 0 not specific enough! Need limx→∞u(x) → O(x−1) 1

li ()→O(|-2) 2.3 Greens Function SLIDE 5 Laplace's Equation Greens Functie V2G(动)=4丌() 6(x)≡ impulse in3 Defined by its behavior in an integral 6(r)f(x)ds2=f(0) Not too hard to show ‖ 3 Ansatz(Indirect) Formulations 3.1 Single Layer Potential SLIDE 6 u(i) o(r)dr u(a)automatically satisfies V2u=0 on 12 Must now enforce boundary condition 3.1.1 Boundary Conditions SLIDE 7 Dirichlet Problem r(r) a(x)dr'z∈r Neumann Problem dur(r) a (x)drz∈r

OR limx→∞u(x) → O(x−2) 2.3 Greens Function Slide 5 Laplace’s Equation Greens Function ∇2G(x)=4πδ(x) δ(x) ≡ impulse in 3-D Defined by its behavior in an integral  δ(x )f(x )dΩ = f(0) Not too hard to show G(x) = 1 x 3 Ansatz (Indirect) Formulations 3.1 Single Layer Potential Slide 6 Consider u(x) =  Γ 1 x − x  σ(x )dΓ u(x) automatically satisfies ∇2u = 0 on Ω. Must now enforce boundary conditions 3.1.1 Boundary Conditions Slide 7 Dirichlet Problem uΓ(x) =  Γ 1 x − x  σ(x )dΓ x ∈ Γ Neumann Problem ∂uΓ(x) ∂nx = ∂ ∂nx  Γ 1 x − x σ(x )dΓ x ∈ Γ 2

3.1.2 Care Evaluating Integrals slide 8 On a smooth surface anil-‖ (E )dr 3.1.3 Neumann Problem 2nd Kind! slide 9 2TO()+ani l 3.1.4 Radiation Condition SLIDE 10 limrl-au(G=A=-2zTo( )ar-O() Unless o(adr=0 Then lim→∞(→O(-) 3.2 Double Layer Potential Consider SLIDE 11 闭= anp li-r/(2)dr u(a)automatically satisfies V2u=0 on 12 Must now enforce boundary conditions

3.1.2 Care Evaluating Integrals Slide 8 On a smooth surface: lim x→Γ ∂ ∂nx  Γ 1 x − x  σ(x )dΓ = 2πσ(x ) +  Γ ∂ ∂nx 1 x − x σ(x )dΓ 3.1.3 Neumann Problem 2nd Kind! Slide 9 ∂uΓ(x) ∂nx = 2πσ(x ) +  Γ ∂ ∂nx 1 x − x  σ(x )dΓ 3.1.4 Radiation Condition Slide 10 limx→∞u(x) =  Γ 1 x − x σ(x )dΓ → O(x−1) Unless  Γ σ(x )dΓ = 0 Then limx→∞u(x) → O(x−2) 3.2 Double Layer Potential Slide 11 Consider u(x) =  Γ ∂ ∂nx 1 x − x µ(x )dΓ u(x) automatically satisfies ∇2u = 0 on Ω. Must now enforce boundary conditions 3

3.2.1 Boundary Conditions Dirichlet Problem ur()=on =- Fo(arier Neumann Problem r(a) a mz=m1如mF|- a(x)drx∈r Neumann Problem generates Hypersingular Integral 3.2.2 Dirichlet Problem 2nd Kind SLIDE 13 dur(E) (x) 3.2.3 Radiation Condition SLIDE 14 nr‖-‖ d→O(引-2) Add Extra Term to slow decay 0 4 Greens Theorem Approach 4.1 Green's Second Identity SLIDE 15 Aluon-uomarl Easy to implement any boundary conditions

3.2.1 Boundary Conditions Slide 12 Dirichlet Problem uΓ(x) =  Γ ∂ ∂nx 1 x − x  σ(x )dΓ x ∈ Γ Neumann Problem ∂uΓ(x) ∂nx = ∂ ∂nx  Γ ∂ ∂nx 1 x − x σ(x )dΓ x ∈ Γ Neumann Problem generates Hypersingular Integral 3.2.2 Dirichlet Problem 2nd Kind! Slide 13 ∂uΓ(x) ∂nx = 2πσ(x ) +  Γ ∂ ∂nx 1 x − x  σ(x )dΓ 3.2.3 Radiation Condition Slide 14 limx→∞u(x) =  Γ ∂ ∂nx 1 x − x  σ(x )dΓ → O(x−2) Add Extra Term to slow decay u(x) =  Γ ∂ ∂nx 1 x − x σ(x )dΓ + αG(x∗) x∗  Ω 4 Green’s Theorem Approach 4.1 Green’s Second Identity Slide 15  Ω u∇2w − w∇2u dΩ =  Γ  w ∂u ∂n − u ∂w ∂n dΓ  Now let w = 1 x−x 2πu(x) =  Γ  1 x − x  ∂u ∂n − u ∂ ∂nx 1 x − x  dΓ  Easy to implement any boundary conditions! 4

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有