正在加载图片...
because cultures that allow a particular type of failure to occur will generally not have systems in place that allow simple remedies to be enacted for the deeper level causes. For example, if someone in an organization wants to investigate causes beyond the simple fact of improper hardness, it may be discovered that the incoming (receiving) inspection clerk was not properly trained to take note of reported hardness values Changing a corporate culture to include better training and education is generally very difficult; many corporations are structured so that the people who are responsible for training do not have an open line of communication to those doing the investigation. This only increases the difficulty of implementing change to prevent failures Professionally performed failure analysis is a multilevel process that includes the physical investigation itself and much more. This Section of this Volume is intended to showcase some of the latest thinking on how the different"layers" of the failure analysis process should work together, so that when the analysis or larger investigation is complete, the people involved will have useful knowledge about how to avoid future occurrences of similar problems Failure analysis of the physical object is often defined as a part of a larger investigation whose intent is to prevent recurrences. If we are to take the broadest view of what is required to prevent failures, there is one answer that stands out: education. Education needs to happen at multiple levels and on multiple subjects within an organization, within larger cultural groups, and within humanity in general, if we are to reduce the frequency of failures of physical objects Education, of which job training is a single component, is what allows people at all levels of an organization to make better decisions in time frames stretching from momentary to career long. There are many books now available that have exercises that help the reader to restructure knowledge into a more useful and accessible form(see, for example, titles in the Selected Reference list for this article). There are other books available that help the reader learn to recognize incorrect lines of reasoning; one such book is Ref 1 Specific levels of failure causes have been defined by Failsafe Network as follows I Phy 2. Human 3. Latent 4 Root Clearly, many people involved with failure analysis today call something a root cause when what they are referring to is a simple physical cause. If failure analysis tasks are performed adequately and with luck, at the end the analyst should be able to take the causes found, show that the failure would have happened the way it did, and also show that if something different had happened at some step along the way, the failure would not have occurred or would have occurred differently. The fact that is often revealed at the end of an investigation is that this is not possible. Even a long and involved investigation leaves unknowns. The honest analyst is left to make a statement of the factors involved in allowing conditions that promoted the likelihood of failure. This still a useful task, perhaps more useful than something that pins"blame"on a particular individual or group Understanding the factors that promoted a failure can lead to an understanding of what is required to have a real improvement in durability of products, equipment, or structures. Understanding goes beyond knowledge of facts. Understanding requires integration of facts into the knowledge base of an individual so that the facts may be transformed into knowledge and then into product and/or process improvement By now it should be clear that failure analysis is a task that requires input from people with many areas of expertise. A simple physical failure of a small object may be analyzed by a single individual with basic training in visual evaluation of engineered objects. However, going to the level of using the failure analysis to improve products and processes requires expertise in the various aspects of human relations and education, at the least Failure analysis of a complex or catastrophic failure requires much more people who perform failure analysis as part of their job function need to have an awareness of how their legal obligations are defined People who perform destructive testing on a component that has failed may sometimes be held accountable for the destruction of evidence on a personal level. Company employees need to learn to protect themselves. Investigators who were just doing the job"have been successfully sued by parties that the judicial system determined had a legitimate interest in the outcome of the failure analysis project The days where anyone unquestioningly agrees to destructively test a component that they know or can see has failed " should be over. This places the destructive testing technician or engineer in a difficult position, as it Thefileisdownloadedfromwww.bzfxw.combecause cultures that allow a particular type of failure to occur will generally not have systems in place that allow simple remedies to be enacted for the deeper level causes. For example, if someone in an organization wants to investigate causes beyond the simple fact of improper hardness, it may be discovered that the incoming (receiving) inspection clerk was not properly trained to take note of reported hardness values. Changing a corporate culture to include better training and education is generally very difficult; many corporations are structured so that the people who are responsible for training do not have an open line of communication to those doing the investigation. This only increases the difficulty of implementing change to prevent failures. Professionally performed failure analysis is a multilevel process that includes the physical investigation itself and much more. This Section of this Volume is intended to showcase some of the latest thinking on how the different “layers” of the failure analysis process should work together, so that when the analysis or larger investigation is complete, the people involved will have useful knowledge about how to avoid future occurrences of similar problems. Failure analysis of the physical object is often defined as a part of a larger investigation whose intent is to prevent recurrences. If we are to take the broadest view of what is required to prevent failures, there is one answer that stands out: education. Education needs to happen at multiple levels and on multiple subjects within an organization, within larger cultural groups, and within humanity in general, if we are to reduce the frequency of failures of physical objects. Education, of which job training is a single component, is what allows people at all levels of an organization to make better decisions in time frames stretching from momentary to career long. There are many books now available that have exercises that help the reader to restructure knowledge into a more useful and accessible form (see, for example, titles in the Selected Reference list for this article). There are other books available that help the reader learn to recognize incorrect lines of reasoning; one such book is Ref 1. Specific levels of failure causes have been defined by Failsafe Network as follows: 1. Physical 2. Human 3. Latent 4. Root Clearly, many people involved with failure analysis today call something a root cause when what they are referring to is a simple physical cause. If failure analysis tasks are performed adequately and with luck, at the end the analyst should be able to take the causes found, show that the failure would have happened the way it did, and also show that if something different had happened at some step along the way, the failure would not have occurred or would have occurred differently. The fact that is often revealed at the end of an investigation is that this is not possible. Even a long and involved investigation leaves unknowns. The honest analyst is left to make a statement of the factors involved in allowing conditions that promoted the likelihood of failure. This is still a useful task, perhaps more useful than something that pins “blame” on a particular individual or group. Understanding the factors that promoted a failure can lead to an understanding of what is required to have a real improvement in durability of products, equipment, or structures. Understanding goes beyond knowledge of facts. Understanding requires integration of facts into the knowledge base of an individual so that the facts may be transformed into knowledge and then into product and/or process improvement. By now it should be clear that failure analysis is a task that requires input from people with many areas of expertise. A simple physical failure of a small object may be analyzed by a single individual with basic training in visual evaluation of engineered objects. However, going to the level of using the failure analysis to improve products and processes requires expertise in the various aspects of human relations and education, at the least. Failure analysis of a complex or catastrophic failure requires much more. People who perform failure analysis as part of their job function need to have an awareness of how their legal obligations are defined. People who perform destructive testing on a component that has failed may sometimes be held accountable for the destruction of evidence on a personal level. Company employees need to learn to protect themselves. Investigators who were “just doing the job” have been successfully sued by parties that the judicial system determined had a legitimate interest in the outcome of the failure analysis project. The days where anyone unquestioningly agrees to destructively test a component that they know or can see “has failed” should be over. This places the destructive testing technician or engineer in a difficult position, as it The file is downloaded from www.bzfxw.com
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有