正在加载图片...
is sometimes difficult to see that something has failed. Corporate cultures that are highly structured and hierarchical can be particularly difficult environments for the failure analysis practitioner, as it may be difficult to even find out if the component has failed. Even if that information is given, relevant background details are often very difficult to obtain, even if the analyst tries. Pressure to finish the analysis in a shorter time frame than is desirable for a quality investigation is commor Those who perform failure analysis work must realize that many people are still unaware of what failure analysts have to offer in terms of allowing clients or fellow employees to replace speculation with facts. The people who request failure analysis work may not be aware that rushing ahead into the destructive portion of an investigation may well destroy much information. The remainder of this article and the following articles in this Section of the Volume are intended to demonstrate proper approaches to failure analysis work. The goal of the proper approach is to allow the most useful and relevant information to be obtained. Readers of the various articles will see many points of view demonstrated. All the valid approaches require planning, defining of objectives, and organization prior to any destructive testing. Simultaneous preservation of evidence is also required. It should now be clear that proper failure analysis cannot be done with input from only a single individual. Even someone only participating in the"straightforward" portions of the investigation of physical failure needs to know how his or her contribution fits into a bigger picture. This is the intent of this Section while the next Section of this Volume is intended to provide an introduction to the vast array of technical tool and information available to the failure analyst The competent failure analyst needs to know more than the failure analysis process and the tools used to support it. The competent failure analyst needs to understand the function of the object being analyzed and to be familiar with the characteristics of the materials and processes used to fabricate it. The failure analyst needs to understand how the product was used and the culture in which it was used. Communication skills are a When you ask a question, do you know for certain what the answer"yes"means? In some cultures, the yes"means"I heard the question"and does not imply that the answer is actually affirmative. The failure analyst must al ways be well versed in multiple disciplines The failure analysis process is something that can be approached in many different ways. Most people who do failure analysis of structural components or larger scale structures and assemblies have probably run into someone who wanted to do a failure analysis without considering a contribution from an experienced materials ngineer. While the analyst may reach a conclusion in this manner, its value should be questioned. A reliable understanding of what happened and why it happened requires the input of a competent materials engineering practitioner. Every"failed"object is made of some material, and some common materials can lose more than 90% of their usual strength if they are not processed properly. Clearly, prior to reaching a conclusion as to the most significant causes of the failure, someone should determine if the correct material d and if it was processed properly. This often requires both an investigation of documentation and a series of physical tests This Volume focuses on the definition of and requirements for a professionally performed failure analysis of a physical object or structure. However, many of the concepts for investigation that are described in this Section have much greater utility than for investigations of physical objects failure. The concepts in learning how to define objectives, negotiate scope of investigation, look at the physical evidence, structure both the investigation and the data that it reveals, and perform general problem solving have broad applicability in other areas of business, manufacturing, and life in general. The examples of how competent materials engineers can use these concepts in a failure analysis or failure investigation are emphasized here Reference cited in this section D. Levy, Tools of Critical Thinking: Metathoughts for Psychology Allyn and Bacon, 1997 The Failure Analysis Process: An Overview Debbie Aliya, Aliya Analytical Principles and Approaches in Failure Analysis Workis sometimes difficult to see that something has failed. Corporate cultures that are highly structured and hierarchical can be particularly difficult environments for the failure analysis practitioner, as it may be difficult to even find out if the component has failed. Even if that information is given, relevant background details are often very difficult to obtain, even if the analyst tries. Pressure to finish the analysis in a shorter time frame than is desirable for a quality investigation is common. Those who perform failure analysis work must realize that many people are still unaware of what failure analysts have to offer in terms of allowing clients or fellow employees to replace speculation with facts. The people who request failure analysis work may not be aware that rushing ahead into the destructive portion of an investigation may well destroy much information. The remainder of this article and the following articles in this Section of the Volume are intended to demonstrate proper approaches to failure analysis work. The goal of the proper approach is to allow the most useful and relevant information to be obtained. Readers of the various articles will see many points of view demonstrated. All the valid approaches require planning, defining of objectives, and organization prior to any destructive testing. Simultaneous preservation of evidence is also required. It should now be clear that proper failure analysis cannot be done with input from only a single individual. Even someone only participating in the “straightforward” portions of the investigation of physical failure needs to know how his or her contribution fits into a bigger picture. This is the intent of this Section, while the next Section of this Volume is intended to provide an introduction to the vast array of technical tools and information available to the failure analyst. The competent failure analyst needs to know more than the failure analysis process and the tools used to support it. The competent failure analyst needs to understand the function of the object being analyzed and to be familiar with the characteristics of the materials and processes used to fabricate it. The failure analyst needs to understand how the product was used and the culture in which it was used. Communication skills are a must. When you ask a question, do you know for certain what the answer “yes” means? In some cultures, the word “yes” means “I heard the question” and does not imply that the answer is actually affirmative. The failure analyst must always be well versed in multiple disciplines. The failure analysis process is something that can be approached in many different ways. Most people who do failure analysis of structural components or larger scale structures and assemblies have probably run into someone who wanted to do a failure analysis without considering a contribution from an experienced materials engineer. While the analyst may reach a conclusion in this manner, its value should be questioned. A reliable understanding of what happened and why it happened requires the input of a competent materials engineering practitioner. Every “failed” object is made of some material, and some common materials can lose more than 90% of their usual strength if they are not processed properly. Clearly, prior to reaching a conclusion as to the most significant causes of the failure, someone should determine if the correct material was used and if it was processed properly. This often requires both an investigation of documentation and a series of physical tests. This Volume focuses on the definition of and requirements for a professionally performed failure analysis of a physical object or structure. However, many of the concepts for investigation that are described in this Section have much greater utility than for investigations of physical objects failure. The concepts in learning how to define objectives, negotiate scope of investigation, look at the physical evidence, structure both the investigation and the data that it reveals, and perform general problem solving have broad applicability in other areas of business, manufacturing, and life in general. The examples of how competent materials engineers can use these concepts in a failure analysis or failure investigation are emphasized here. Reference cited in this section 1. D. Levy, Tools of Critical Thinking: Metathoughts for Psychology Allyn and Bacon, 1997 The Failure Analysis Process: An Overview Debbie Aliya, Aliya Analytical Principles and Approaches in Failure Analysis Work
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有