正在加载图片...
602 工程科学学报,第43卷,第5期 https://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/ 88(21):212112 YOLEPCIM 2014 SiC Market ARROW KMA Yole-final.pdf [18]Ito A,Akiyama T,Nakamura K,et al.First-principles calculations [4]Ma H C.Zhou X M.Gao D W.High-power DC-DC converter for initial oxidation processes of SiC surfaces:Effect of crystalline based on SiC power device.ChinJ Eng,2017,39(8):1224 surface orientations.JpnJApp/Phys,2015,54(10):101301 (马后成,周晓敏,高大威.基于SiC功率器件的大功率DC一DC [19]Matsushita Y.Oshiyama A.Mechanisms of initial oxidation of 变换器.工程科学学报,2017,39(8):1224) 4H-SiC (0111)and (0001)surfaces unraveled by first-principles [5]Yuan X L.Zheng Y T,Zhu X H.et al.Recent progress in calculations [J/OL].ArXiv Preprint (2016-12-01)[2020-08-15]. diamond-based MOSFETs.Int J Miner Metall Mater,2019, https://arxiv.org/abs/1612.00189 26(10):1195 [20]Presser V,Nickel K G.Silica on silicon carbide.Crit Rev Solid [6] Vickridge I,Ganem J,Hoshino Y,et al.Growth of SiO on SiC by State Mater Sci,2008,33(1):1 dry thermal oxidation:mechanisms.J Phrys D Appl Phys,2007, [21]Yamamoto T,Hijikata Y,Yaguchi H,et al.Oxide growth rate 40(20):6254 enhancement of silicon carbide (0001)Si-faces in thin oxide [7]Yano H.Katafuchi F,Kimoto T,et al.Effects of wet regime.Jpn JAppl Phys,2008,47(10R):7803 oxidation/anneal on interface properties of thermally oxidized [22]Yamamoto T,Hijikata Y,Yaguchi H,et al.Growth rate SiO,/SiC MOS system and MOSFET's.IEEE Trans Electron enhancement of (0001)-face silicon-carbide oxidation in thin oxide Devices,1999,46(3):504 regime.JpnJAppl Phys,2007,46(8L):L770 [8] Kamimura K,Kobayashi D,Okada S,et al.Preparation and [23]Hosoi T,Nagai D,Sometani M,et al.Ultrahigh-temperature rapid characterization of SiO/6H-SiC metal-insulator-semiconductor thermal oxidation of 4H-SiC (0001)surfaces and oxidation structure using TEOS as source material.Appl Surf Sci,2001, temperature dependence of SiO/SiC interface properties.Appl 184(1-4)346 Phys Lett,2016,109(18):182114 [9]Lai P T,Xu J P,Wu H P,et al.Interfacial properties and reliability [24]Jia Y F,Lv H L,Song Q W,et al.Influence of oxidation of SiO,grown on 6H-SiC in dry O plus trichloroethylene. temperature on the interfacial properties of n-type 4H-SiC MOS Microelectron Reliab,2004,44(4):577 capacitors.Appl Surf Sci,2017,397:175 [10]Deal B E,Grove A S.General relationship for the thermal [25]Goto D,Hijikata Y.Unified theory of silicon carbide oxidation oxidation of silicon.JApp/Phys,1965,36(12):3770 based on the Si and C emission model./Phys DAppl Phys,2016, [11]Song Y,Dhar S,Feldman L C,et al.Modified deal grove model 49(22):225103 for the thermal oxidation of silicon carbide.J App/Phys,2004 95(9):4953 [26]Gupta S K,Akhtar J.Thermal oxidation of silicon carbide (SiC)- [12]Massoud H Z,Plummer J D,Irene E A.Thermal oxidation of experimentally observed facts /Mukherjee M.Silicon Carbide- silicon in dry oxygen growth-rate enhancement in the thin regime Materials.Processing and Applications in Electronic Devices. I.Experimental results.J Electrochem Soc,1985,132(11):2685 Rijeka:InTech,2011:207 [13]Goto D,Hijikata Y,Yagi S,et al.Differences in SiC thermal [27]Hou X M,Zhou G Z.Oxidation behavior of SiAlON materials.J oxidation process between crystalline surface orientations Uniy Sci Technol Beijing,2007,29(11):1114 observed by in-situ spectroscopic ellipsometry.J App/Phys,2015, (侯新梅,周国治.SiAION材料的氧化行为.北京科技大学学报, 117(9):095306 2007,29(11):1114) [14]Kageshima H,Shiraishi K,Uematsu M.Universal theory of Si [28]Hou X M,Yu Z Y,Chen Z Y,et al.Reaction kinetics of BN oxidation rate and importance of interfacial Si emission.JpnJ powder under high temperature water vapor.J Univ Sci Technol 4pplP3,1999,38(9A):L971 Beijing,2013,35(10:1346 [15]Hijikata Y,Yaguchi H,Yoshida S.A kinetic model of silicon (侯新梅,虞自由,陈志远,等.高温含水条件下BN粉体的反应动 carbide oxidation based on the interfacial silicon and carbon 力学.北京科技大学学报,2013,35(10):1346) emission phenomenon.App/Plrys Express,2009,2(2):021203 [29]Wang E H,Chen J H,Hu X J,et al.New perspectives on the [16]Schurmann M,Dreiner S,Berges U,et al.Structure of the interface gas-solid reaction of a-Si N powder in wet air at high between ultrathin SiOz films and 4H-SiC (0001).Plys Rev B, temperature.J Am Ceram Soc,2016,99(8):2699 2006,74(3):035309 [30]Wang E H,Cheng J,Ma J W,et al.Effect of temperature on the [17]Fiorenza P,Raineri V.Reliability of thermally oxidized SiO/4H- initial oxidation behavior and kinetics of 5Cr ferritic steel in air. Sic by conductive atomic force microscopy.Appl Phys Len,006 Metall Mater Trans A.2018,49(10):5169https://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/ YOLEPCIM_2014_SiC_Market_ARROW_KMA_Yole-final.pdf Ma H C, Zhou X M, Gao D W. High-power DC-DC converter based on SiC power device. Chin J Eng, 2017, 39(8): 1224 (马后成, 周晓敏, 高大威. 基于SiC功率器件的大功率DC—DC 变换器. 工程科学学报, 2017, 39(8):1224) [4] Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond-based MOSFETs. Int J Miner Metall Mater, 2019, 26(10): 1195 [5] Vickridge I, Ganem J, Hoshino Y, et al. Growth of SiO2 on SiC by dry thermal oxidation: mechanisms. J Phys D Appl Phys, 2007, 40(20): 6254 [6] Yano H, Katafuchi F, Kimoto T, et al. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2 /SiC MOS system and MOSFET ’s. IEEE Trans Electron Devices, 1999, 46(3): 504 [7] Kamimura K, Kobayashi D, Okada S, et al. Preparation and characterization of SiO2 /6H-SiC metal–insulator–semiconductor structure using TEOS as source material. Appl Surf Sci, 2001, 184(1-4): 346 [8] Lai P T, Xu J P, Wu H P, et al. Interfacial properties and reliability of SiO2 grown on 6H-SiC in dry O2 plus trichloroethylene. Microelectron Reliab, 2004, 44(4): 577 [9] Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 [10] Song Y, Dhar S, Feldman L C, et al. Modified deal grove model for the thermal oxidation of silicon carbide. J Appl Phys, 2004, 95(9): 4953 [11] Massoud H Z, Plummer J D, Irene E A. Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime I. Experimental results. J Electrochem Soc, 1985, 132(11): 2685 [12] Goto D, Hijikata Y, Yagi S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry. J Appl Phys, 2015, 117(9): 095306 [13] Kageshima H, Shiraishi K, Uematsu M. Universal theory of Si oxidation rate and importance of interfacial Si emission. Jpn J Appl Phys, 1999, 38(9A): L971 [14] Hijikata Y, Yaguchi H, Yoshida S. A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon. Appl Phys Express, 2009, 2(2): 021203 [15] Schürmann M, Dreiner S, Berges U, et al. Structure of the interface between ultrathin SiO2 films and 4H-SiC (0001). Phys Rev B, 2006, 74(3): 035309 [16] Fiorenza P, Raineri V. Reliability of thermally oxidized SiO2 /4H￾SiC by conductive atomic force microscopy. Appl Phys Lett, 2006, [17] 88(21): 212112 Ito A, Akiyama T, Nakamura K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: Effect of crystalline surface orientations. Jpn J Appl Phys, 2015, 54(10): 101301 [18] (0001)¯ Matsushita Y, Oshiyama A. Mechanisms of initial oxidation of 4H-SiC (0111) and surfaces unraveled by first-principles calculations [J/OL]. ArXiv Preprint (2016-12-01)[2020-08-15]. https://arxiv.org/abs/1612.00189 [19] Presser V, Nickel K G. Silica on silicon carbide. Crit Rev Solid State Mater Sci, 2008, 33(1): 1 [20] Yamamoto T, Hijikata Y, Yaguchi H, et al. Oxide growth rate enhancement of silicon carbide (0001) Si-faces in thin oxide regime. Jpn J Appl Phys, 2008, 47(10R): 7803 [21] Yamamoto T, Hijikata Y, Yaguchi H, et al. Growth rate enhancement of (0001)-face silicon–carbide oxidation in thin oxide regime. Jpn J Appl Phys, 2007, 46(8L): L770 [22] Hosoi T, Nagai D, Sometani M, et al. Ultrahigh-temperature rapid thermal oxidation of 4H-SiC (0001) surfaces and oxidation temperature dependence of SiO2 /SiC interface properties. Appl Phys Lett, 2016, 109(18): 182114 [23] Jia Y F, Lv H L, Song Q W, et al. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors. Appl Surf Sci, 2017, 397: 175 [24] Goto D, Hijikata Y. Unified theory of silicon carbide oxidation based on the Si and C emission model. J Phys D Appl Phys, 2016, 49(22): 225103 [25] Gupta S K, Akhtar J. Thermal oxidation of silicon carbide (SiC)– experimentally observed facts // Mukherjee M. Silicon Carbide— Materials, Processing and Applications in Electronic Devices. Rijeka: InTech, 2011: 207 [26] Hou X M, Zhou G Z. Oxidation behavior of SiAlON materials. J Univ Sci Technol Beijing, 2007, 29(11): 1114 (侯新梅, 周国治. SiAlON材料的氧化行为. 北京科技大学学报, 2007, 29(11):1114) [27] Hou X M, Yu Z Y, Chen Z Y, et al. Reaction kinetics of BN powder under high temperature water vapor. J Univ Sci Technol Beijing, 2013, 35(10): 1346 (侯新梅, 虞自由, 陈志远, 等. 高温含水条件下BN粉体的反应动 力学. 北京科技大学学报, 2013, 35(10):1346) [28] Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 [29] Wang E H, Cheng J, Ma J W, et al. Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air. Metall Mater Trans A, 2018, 49(10): 5169 [30] · 602 · 工程科学学报,第 43 卷,第 5 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有