正在加载图片...
第6期 刘政楠等:基底预处理对于水热法制备Z0微/纳米管阵列的影响 ·761· 得到的微/纳米管的直径和长度不同.图5(a)中的 化,微/纳米管的分布不太均匀:而图5(b)中绝大部 管直径为2~5m,长度达10~25um,且单根微/纳 分微/纳米管均垂直于基底生长并且分布比较均匀. 米管之间的差别比较大:图5(b)中的纳米管直径大 由上述比较可知,采用盐酸浸泡法预处理基底可以 约为1μm,长度为2~4um,尺寸的分布比较均匀.在较大范围内制备得到尺寸均一、管径较小、分布均 其三,二者的分布不同.图5(a)中形貌比较多样 匀且垂直于基底的Zn0微/纳米管阵列. 20m 图5Zm0微/纳米管阵列的SEM像.(a)基底吹氮气:(b)10-4malL1的盐酸溶液浸泡12h后,水热反应4h Fig.5 SEM images of Zn0 micro/nanotubes arrays:(a)on substrates treated by N,:(b)after immersion in 10-4 mol.L-!hydrochloric acid for 12 h and hydrothermal reaction for 4 h 2002,74(2):201 3结论 ]Vayssieres L,Keis K.Hagfeldt A,et al.Three-dimensional array of highly oriented crystalline ZnO microtubes.Chem Mater,2001, 采用水热法,在铺膜预处理的基底上,水热生长 13(12):4395 4h未能制备出Zn0纳米管阵列;高纯氮气吹干基 [10]She G W,Zhang X H,Shi W S,et al.Electrochemical/chemi- 底和盐酸浸泡基底对未铺膜基底进行预处理,分别 cal synthesis of highlyoriented single-crystal Zno nanotube arrays 制备得到Z0微/纳米管阵列,且各自的成管率约 on transparent conductive substrates.Electrochem Commun, 为100%,且这两种不同的处理方法制备出的微/纳 2007,9(12):2784 米管在尺寸、形貌和分布上有所不同.在成管机理 [11]Sun Y,Fuge G M,Fox N A,et al.Synthesis of aligned arrays of 的研究中引用了Z0顶部锌终端这一概念,并且通 ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO f6lm.Ade Mater,2005,17(20):2477 过实验证明了两种基底预处理的方法都可以制备具 [12]Guo X.Guo M,Zhang M,et al.Effects of pretreatment of sub- 有锌终端的Z0品体,该晶体更容易成管 strates on preparation of large scale Zno nanotube arrays.Rare Met,2010,29(1):21 参考文献 [13]Vayssieres L,Keis K,Lindquist S E,et al.Purpose-uilt aniso- [1]Goldberger J,Fan R,Yang P D.Inorganic nanotubes:a novel tropie metal oxide material:3D highly oriented microrod array of platform for nanofluidics.Accounts Chem Res,2006,39(4):239 Za0.JPhys Chem B,2001,105(17):3350 2]Tong Y H,Liu YC,Shao CL,et al.Growth and optical proper- [14]Vohs J M,Barteau M A,Conversion of methanol,formaldehyde ties of faceted hexagonal ZnOnanotubes.J Phys Chem B,2006, and formic acid on the polar faces of zinc oxide.Surf Sci,1986. 110(30):14714 176(1/2):91 B]Xing Y J,Xia Z H,Zhang X D,et al.Nanotubular structures of [15]Dulub 0,Diebold U,Kresse G.Novel stabilization mechanism zine oxide.Solid State Commun,2004,129(10):671 on polar surfaces:ZnO(0001)-Zn.Phys Rer Lett,2003,90 4]Kong X H.Sun X M,Li X L,et al.Catalytie growth of Zno (1)article No.016102 nanotubes.Mater Chem Phys,2003,82(3):997 [16]Tena-Zaera R,Elias J,Wang G,et al.Role of chloride ions on [5]Yu H D,Zhang Z,Han M Y,et al.A general low-emperature electrochemical deposition of Zn nanowire arrays from O reduc- route for large-scale fabrication of highly oriented ZnO nanorod/ tion.J Phys Chem C.2007,111(45):16706 nanotube arrays.J Am Chem Soc,2005,127(8):2378 [17]Sun Y,Riley D,Ashfold M N R.Mechanism of ZnO nanotube 6]Lai M,Riley D J.Templated electrosynthesis of zine oxide nano- rods.Chem Mater,2006,18(9):2233 growth by hydrothermal methods on Zno film-coated Si sub- strates.J Phys Chem B,2006,110(31)15186 Zhang B P,Binh N T,Wakatsuki K,et al.Formation of highly- aligned ZnO tubes on sapphire (0001)substrates.Appl Phys Lett, [18]She G W,Zhang X H,Shi W S,et al.Controlled synthesis of 2004.84(20):4098 oriented single-erystal Zn0 nanotube arrays on transparent con- ductive substrates.Appl Phys Lett,2008,92 (5):article No 8]Wang Z,Li H L.Highly ordered zinc oxide nanotubules synthe- 053111 sized within the anodic aluminum oxide template.Appl Phys A,第 6 期 刘政楠等: 基底预处理对于水热法制备 ZnO 微/纳米管阵列的影响 得到的微/纳米管的直径和长度不同. 图 5( a) 中的 管直径为 2 ~ 5 μm,长度达 10 ~ 25 μm,且单根微/纳 米管之间的差别比较大; 图 5( b) 中的纳米管直径大 约为 1 μm,长度为 2 ~ 4 μm,尺寸的分布比较均匀. 其三,二者的分布不同. 图 5 ( a) 中形貌比较多样 化,微/纳米管的分布不太均匀; 而图 5( b) 中绝大部 分微/纳米管均垂直于基底生长并且分布比较均匀. 由上述比较可知,采用盐酸浸泡法预处理基底可以 在较大范围内制备得到尺寸均一、管径较小、分布均 匀且垂直于基底的 ZnO 微/纳米管阵列. 图 5 ZnO 微/纳米管阵列的 SEM 像 . ( a) 基底吹氮气; ( b) 10 - 4 mol·L - 1的盐酸溶液浸泡 12 h 后,水热反应 4 h Fig. 5 SEM images of ZnO micro /nanotubes arrays: ( a) on substrates treated by N2 ; ( b) after immersion in 10 - 4 mol·L - 1 hydrochloric acid for 12 h and hydrothermal reaction for 4 h 3 结论 采用水热法,在铺膜预处理的基底上,水热生长 4 h 未能制备出 ZnO 纳米管阵列; 高纯氮气吹干基 底和盐酸浸泡基底对未铺膜基底进行预处理,分别 制备得到 ZnO 微/纳米管阵列,且各自的成管率约 为 100% ,且这两种不同的处理方法制备出的微/纳 米管在尺寸、形貌和分布上有所不同. 在成管机理 的研究中引用了 ZnO 顶部锌终端这一概念,并且通 过实验证明了两种基底预处理的方法都可以制备具 有锌终端的 ZnO 晶体,该晶体更容易成管. 参 考 文 献 [1] Goldberger J,Fan R,Yang P D. Inorganic nanotubes: a novel platform for nanofluidics. Accounts Chem Res,2006,39( 4) : 239 [2] Tong Y H,Liu Y C,Shao C L,et al. Growth and optical proper￾ties of faceted hexagonal ZnOnanotubes. J Phys Chem B,2006, 110( 30) : 14714 [3] Xing Y J,Xia Z H,Zhang X D,et al. Nanotubular structures of zinc oxide. Solid State Commun,2004,129( 10) : 671 [4] Kong X H,Sun X M,Li X L,et al. Catalytic growth of ZnO nanotubes. Mater Chem Phys,2003,82( 3) : 997 [5] Yu H D,Zhang Z,Han M Y,et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod / nanotube arrays. J Am Chem Soc,2005,127( 8) : 2378 [6] Lai M,Riley D J. Templated electrosynthesis of zinc oxide nano￾rods. Chem Mater,2006,18( 9) : 2233 [7] Zhang B P,Binh N T,Wakatsuki K,et al. Formation of highly￾aligned ZnO tubes on sapphire ( 0001) substrates. Appl Phys Lett, 2004,84( 20) : 4098 [8] Wang Z,Li H L. Highly ordered zinc oxide nanotubules synthe￾sized within the anodic aluminum oxide template. Appl Phys A, 2002,74( 2) : 201 [9] Vayssieres L,Keis K,Hagfeldt A,et al. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater,2001, 13( 12) : 4395 [10] She G W,Zhang X H,Shi W S,et al. Electrochemical /chemi￾cal synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Electrochem Commun, 2007,9( 12) : 2784 [11] Sun Y,Fuge G M,Fox N A,et al. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv Mater,2005,17( 20) : 2477 [12] Guo X,Guo M,Zhang M,et al. Effects of pretreatment of sub￾strates on preparation of large scale ZnO nanotube arrays. Rare Met,2010,29( 1) : 21 [13] Vayssieres L,Keis K,Lindquist S E,et al. Purpose-built aniso￾tropic metal oxide material: 3D highly oriented microrod array of ZnO. J Phys Chem B,2001,105( 17) : 3350 [14] Vohs J M,Barteau M A,Conversion of methanol,formaldehyde and formic acid on the polar faces of zinc oxide. Surf Sci,1986, 176( 1 /2) : 91 [15] Dulub O,Diebold U,Kresse G. Novel stabilization mechanism on polar surfaces: ZnO ( 0001 ) -Zn. Phys Rev Lett,2003,90 ( 1) : article No. 016102 [16] Tena-Zaera R,Elias J,Wang G,et al. Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduc￾tion. J Phys Chem C,2007,111( 45) : 16706 [17] Sun Y,Riley D,Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si sub￾strates. J Phys Chem B,2006,110( 31) : 15186 [18] She G W,Zhang X H,Shi W S,et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent con￾ductive substrates. Appl Phys Lett,2008,92 ( 5) : article No. 053111 ·761·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有