正在加载图片...
charge separation and fast charge transfer via electronic and structural manipulation of the photocatalysts.As one of the hot-spot photocatalysts,graphitic phase carbon nitride (g-CN)has received tremendous attention in the research of solar-to-fuel (STF)conversion and carbon dioxide reduction reactions(CORR),owing to the intrinsic merits such as metal-free components,low cost resources,good stability and visible light response.Recently,much progress has been achieved to improve the photocatalytic STF efficiency of g-CN-based materials by developing strategies of structures and electric configurations engineering.In this paper,different modification methods for g- CN were systematically reviewed from the perspective of defects control in order to provide a new understanding on its structure-function relationship.Particularly,this paper was composed in detail from three aspects to demonstrate the latest research progress of g-C:N photocatalytic materials.The first luced the routes toward g-CiN,with different shapes,including ID,2D and 3D.In the second effects of doping and defects control on the separation and transfer of photogenerated electron-hole pairs were carefully reviewed.In the final part,heterojunctions based on g-C3Na were summarized Z-scheme heterojunction was highlighted.In addition,some future directions and challenges enba cement of photocatalytic efficiency upon g-CNa were pointed out,according to our understanding on photocatalytic water splitting KEY WORDS Graphitic phase carbon nitride(g-C:Na);morphological control;structural engineering; heterojunction construction;photocatalytic hydrogen eyolution 经历一百多年的加速发展,全球社会建立在化石燃料之上的工业化和现代化引发了大 量的环境污染和气候问题,寻我清洁和可再生能源替代品,降低CO2排放已成为可持续发 展的共识。在各种可再生能源中,太阳能因其清洁、无限储量而备受关注,被认为是解 决这一全球性问题的跳实际上,地球表面每小时接受的太阳辐射能量便可以满足全 球一年的能源需求,将低通量的太阳光转换为高密度的电能或者化学能是太阳能利用的 有效途径,光伏辅锄电解、PVE)、光电化学(PEC)电池和光催化是目前太阳能转换系 统的三种主要类型,)在这些技术中,光催化技术已成为将太阳能转化为化学能源最具吸 引力的方法之一可并在水分解、CO2能源化、固氮、绿色有机合成以及高级氧化领域有着 巨大的应潜虽然光催化技术在近年来突飞猛进,但目前已知的光催化性能在整体上 仍低于商亚应用的水平0。因此,寻找坚固、稳定的太阳能驱动光催化剂作为提高催化 效率的核心显得尤为重要。 自1972年Fujishima开创性地发现在紫外光作用下可以利用TiO2将水分解成氢气和 氧气的现象,随后ZnOI、BiOBrl16、CaNio,刀、CdS8、Cu2MoS,I、BiVO,Po等多种潜 在的具有紫外和可见光活性的光催化材料被广泛研究。尽管此后光催化材料研究取得了无 数进展,但仍没能寻找到一种能够满足所有要求,包括无毒、高效、化学稳定性高、成本 效益好、性能优异等的商业化光催化剂。 2009年,Wang等首次报道了二维(2D)非金属半导体类石墨相氮化碳(g-CN4) 能够在可见光下分解水制氢气。自此,g-CN4成为光催化剂的热门研究对象,并不断取得charge separation and fast charge transfer via electronic and structural manipulation of the photocatalysts. As one of the hot-spot photocatalysts, graphitic phase carbon nitride (g-C3N4) has received tremendous attention in the research of solar-to-fuel (STF) conversion and carbon dioxide reduction reactions (CO2RR), owing to the intrinsic merits such as metal-free components, low cost resources, good stability and visible light response. Recently, much progress has been achieved to improve the photocatalytic STF efficiency of g-C3N4-based materials by developing strategies of structures and electric configurations engineering. In this paper, different modification methods for g￾C3N4 were systematically reviewed from the perspective of defects control in order to provide a new understanding on its structure-function relationship. Particularly, this paper was composed in detail from three aspects to demonstrate the latest research progress of g-C3N4 photocatalytic materials. The first part introduced the routes toward g-C3N4 with different shapes, including 1D, 2D and 3D. In the second part, the effects of doping and defects control on the separation and transfer of photogenerated electron-hole pairs were carefully reviewed. In the final part, heterojunctions based on g-C3N4 were summarized, in which the Z-scheme heterojunction was highlighted. In addition, some future directions and challenges for the enhancement of photocatalytic efficiency upon g-C3N4 were pointed out, according to our understanding on photocatalytic water splitting. KEY WORDS Graphitic phase carbon nitride (g-C3N4); morphological control; structural engineering; heterojunction construction; photocatalytic hydrogen evolution 经历一百多年的加速发展,全球社会建立在化石燃料之上的工业化和现代化引发了大 量的环境污染和气候问题,寻找清洁和可再生能源替代品,降低 CO2排放已成为可持续发 展的共识[1,2]。在各种可再生能源中,太阳能因其清洁、无限储量而备受关注,被认为是解 决这一全球性问题的良方[3]。实际上,地球表面每小时接受的太阳辐射能量便可以满足全 球一年的能源需求[4]。将低通量的太阳光转换为高密度的电能或者化学能是太阳能利用的 有效途径,光伏辅助电解(PVE)、光电化学(PEC)电池和光催化是目前太阳能转换系 统的三种主要类型[5-8],在这些技术中,光催化技术已成为将太阳能转化为化学能源最具吸 引力的方法之一[9],并在水分解、CO2能源化、固氮、绿色有机合成以及高级氧化领域有着 巨大的应用潜力。虽然光催化技术在近年来突飞猛进,但目前已知的光催化性能在整体上 仍低于商业应用的水平[10-13]。因此,寻找坚固、稳定的太阳能驱动光催化剂作为提高催化 效率的核心显得尤为重要。 自 1972 年 Fujishima[14]开创性地发现在紫外光作用下可以利用 TiO2将水分解成氢气和 氧气的现象,随后 ZnO[15]、BiOBr[16]、CaNiO3 [17]、CdS[18]、Cu2MoS4 [19]、BiVO4 [20]等多种潜 在的具有紫外和可见光活性的光催化材料被广泛研究。尽管此后光催化材料研究取得了无 数进展,但仍没能寻找到一种能够满足所有要求,包括无毒、高效、化学稳定性高、成本 效益好、性能优异等的商业化光催化剂[21]。 2009 年,Wang 等[22]首次报道了二维(2D)非金属半导体类石墨相氮化碳(g-C3N4) 能够在可见光下分解水制氢气。自此,g-C3N4成为光催化剂的热门研究对象,并不断取得 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有