正在加载图片...
VoL 11 No. 3 February 2018 毛琳等:丛枝菌根真菌的生理生态功能研究进展 241 吸收则主要通过菌丝分泌酸性磷酸酶帮助完成。最近的一份研究表明,接种AMF后,土壤P的矿化 量增加了18%,植物P吸收增加了15%,同时活性及非活性磷的淋失量下降了31%8上述研究结果清 楚地表明了AMF对植物-土壤之间的磷循环过程有重要的调控作用 5结论与展望 综上所述,AMF不仅能在个体水平显著改善宿主植物的营养状况及抗逆能力,还能影响植物种群水 平以及群落水平的相互关系,进而影响植物群落生产力及群落结构;此外,AMF还能影响根际微生物的 群落组成,参与并调控关键元素的地化循环等过程,甚至有人认为AMF通过多种直接及间接途径参与 了整个陆地生态系统过程。虽然AMF的生理、生态功能已被广泛认可,但相关机理仍需进一步阐明 今后的研究需结合目前广泛关注的CO2升高、气温升高、氮沉降、无机化肥的大量使用、人类对生态系 统的强烈扰动等背景,以系统地揭示在全球变化及人类活动背景下AMF的生理、生态功能以及AMF群 落结构与功能的相互关系,这将有助于科学地指导农林牧业生产实践和准确预测全球变化的生态影响 [参考文献]( References [1] PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbioses[p]. Nature Reviews Microbiology, 2008, [2] SELOSSE M A, ROUSSET F The plant-fungal marketplace[J]. Science, 2011, 333(6044): 828-829 3 AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil arbon storage[J]. Nature, 2014, 505(7484): 543-545 4 SOLIVERES S, van der PLAs F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality []. Nature, 2016, 536(7617): 456-459 [5 JING X, SANDERS N J, SHI Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J]. Nature Communications, 2015, 6: 8159 6 CHENG L, BOOKER FL, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 Science,2012,337(6098):l084-1087 [7 BENDER S F, WAGG C, van der HEIDEN MG A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability]. Trends in Ecology Evolution, 2016, 31(6): 440-452. [8 NUCCIO E E, HODGE A, PETT-RIDGE J, et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition J]. Environmental Microbiology, 2013, 15(6) 1870-1881 [9 ROGER A, GETAZ M, RASMANN S, et al. Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference J]. Ecological Entomology, 2013, 38(4): 330-338 [10 SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[]. Annual Review of Plant Biology, 2011, 62: 227-250 []1刘润进,陈应龙.菌根学[M北京:科学出版社,2007 LIU RJ, CHEN Y L. Mycorrhizology [M]. Beijing: Science Press, 2007. (in Chinese) [12 SMITH S E, READ D J Mycorrhizal symbiosis[M]. 3rd ed Salt Lake City: Academic Press, 2008 [13] SMITH S E, SMITH F A, JAKOBSEN I Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses J]. Plant Physiology, 2003, 133(1): 16-20 [14 SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by from soil to cellg. Plant Physiology, 1998, l16(2):447-453. [15 HARRISON M J, van BUUREN M L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme]. Nature, 1995,378(6557):626-629Vol.11 No.3 February 2018 毛 琳等:丛枝菌根真菌的生理生态功能研究进展 241 吸收则主要通过菌丝分泌酸性磷酸酶帮助完成[92]。最近的一份研究表明,接种 AMF 后,土壤 P 的矿化 量增加了 18%,植物 P 吸收增加了 15%,同时活性及非活性磷的淋失量下降了 31%[88]. 上述研究结果清 楚地表明了 AMF 对植物−土壤之间的磷循环过程有重要的调控作用。 5 结论与展望 综上所述,AMF 不仅能在个体水平显著改善宿主植物的营养状况及抗逆能力,还能影响植物种群水 平以及群落水平的相互关系,进而影响植物群落生产力及群落结构;此外,AMF 还能影响根际微生物的 群落组成,参与并调控关键元素的地化循环等过程,甚至有人认为 AMF 通过多种直接及间接途径参与 了整个陆地生态系统过程[93]。虽然 AMF 的生理、生态功能已被广泛认可,但相关机理仍需进一步阐明。 今后的研究需结合目前广泛关注的 CO2 升高、气温升高、氮沉降、无机化肥的大量使用、人类对生态系 统的强烈扰动等背景,以系统地揭示在全球变化及人类活动背景下 AMF 的生理、生态功能以及 AMF 群 落结构与功能的相互关系[94~96],这将有助于科学地指导农林牧业生产实践和准确预测全球变化的生态影响。 [参考文献] (References) [1] PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10): 763-775. [2] SELOSSE M A, ROUSSET F. The plant-fungal marketplace[J]. Science, 2011, 333(6044): 828-829. [3] AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7484): 543-545. [4] SOLIVERES S, van der PLAS F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536(7617): 456-459. [5] JING X, SANDERS N J, SHI Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J]. Nature Communications, 2015, 6: 8159. [6] CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337(6098): 1084-1087. [7] BENDER S F, WAGG C, van der HEIJDEN M G A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability[J]. Trends in Ecology & Evolution, 2016, 31(6): 440-452. [8] NUCCIO E E, HODGE A, PETT-RIDGE J, et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition[J]. Environmental Microbiology, 2013, 15(6): 1870-1881. [9] ROGER A, GÉTAZ M, RASMANN S, et al. Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference[J]. Ecological Entomology, 2013, 38(4): 330-338. [10] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62: 227-250. [11] 刘润进,陈应龙. 菌根学[M]. 北京:科学出版社,2007. LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing: Science Press, 2007. (in Chinese) [12] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 3rd ed. Salt Lake City: Academic Press, 2008. [13] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. [14] SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants: from soil to cell[J]. Plant Physiology, 1998, 116(2): 447-453. [15] HARRISON M J, van BUUREN M L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme[J]. Nature, 1995, 378(6557): 626-629
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有