正在加载图片...
解(1)设a+a2+…+an=Sn,imSn=a,则由∑ka4=nSn-∑S4可知 im∑k4=imSn-2-1.1∑Sk=a-a=0。 →① n→ n→nn-1k= (2)由0<(mha2…an)≤-(a1+2a2+…+nan)与(1),即得到 lim(nI-a 13.已知 lim a=a, lim b=b,证明: lim adN+a2b+…+a,b 证令an=a+an,bn=b+Bn,由 lim a=a, lim b=b,可知 lim a=0, imBn=0。设vn∈N,|BM。因为 a1b+a2b,+…+a ∑1+1aBn Bnk+1-∑|a 由lm1a4=0,lm1∑k=0及m1∑A1=0,得到 n→∞nk n→nk=1 +a b 14.设数列{an}满足m4+a+a=a(-<a<+∞)。证明 lim -=0 证因为im+a2t+an=im( m)=a,所以 n a1+a2+……+a解(1)设a1 + a2 +"+ an = Sn,limn→∞ Sn = a ,则由 kak nS S 可知 k n n k n = = − ∑ ∑ = − 1 1 1 k limn→∞ ] 0 1 1 1 lim lim[ 1 1 1 1 = − = − ⋅ − ∑ = − ∑ − = →∞ →∞ = S a a n n n ka S n n k k n n n n k k 。 (2)由 n n a a an 1 1 2 0 < ( !⋅ " ) ( 2 ) 1 1 2 n a a na n ≤ + +"+ 与(1),即得到 limn→∞ ( ! n a a a ) n n ⋅ 1 2 1 " = 0。 13. 已知limn→∞ an = a ,limn→∞ bn = b,证明: limn→∞ a b a b a b n ab 1 2 n n + 1+ + n 1 = − " 。 证 令an = a +α n bn = b + β n , ,由limn→∞ an = a ,limn→∞ bn = b,可知limn→∞ α n = 0, limn→∞ β n = 0。设∀n ∈N +, β n ≤ M 。因为 = + + − + + ab n a1bn a2bn 1 " anb1 ∑ = n k k n b 1 α ∑ = + n k k n a 1 β ∑ = + − + n k k n k n 1 1 1 α β , ∑ = − + ≤ n k k n k n 1 1 | | 1 α β | | 1 ∑ = n k k n M α , 由 0 1 lim 1 ∑ = = →∞ n k k n n α , 0 1 lim 1 ∑ = = →∞ n k k n n α 及 0 1 lim 1 ∑ = = →∞ n k k n n β ,得到 limn→∞ a b a b a b n ab 1 2 n n + 1+ + n 1 = − " 。 14. 设数列{ an }满足limn→∞ a a a n 1 2 + +"+ n = a (−∞ <a<+ ∞) 。证明: limn→∞ a n n = 0。 证 因为 = + + + − →∞ n a a an n 1 2 1 lim " limn→∞ a n a a a n n n = − + + + ⋅ − − ) 1 1 ( 1 2 " 1 ,所以 limn→∞ a n n =limn→∞ n a1 + a2 +"+ an ( ) 0 1 2 1 = + + + − − n a a " an 。 19
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有