g(0)与 存在且对一切O∈h f(, e)dx 可(x,O) 品∫∫(x1x2…x,)∏(x,0)t 「-∫xx2-x)∏x,0) [g'(e) (3)令D2ml() 等式成立条件为:彐不倚赖于5525n但可能依赖于的常数k 使ybeg/(5:O) =k(7-g(6) 证:I(0)=+∞或Dn=+∞,不等式显然成立, En=「-xx2xn∏(xO),=g(,(的无偏性) 由正则条件(1),(2)知 g(O)=「-.「 f(xi, elx 由于f(x0)为5的密度函数,「f(x,O)dk,=1 「f(x2O)dhx,=0 r alog f(x, 0) 而 f(x, 0)dx a6L_5(x 0)dx, =0 且有g( relog f(x1,6) f(x,6)x1=0(i=1,2,,n) alog f(x, 0)(2) g( )与 f 存在且对一切 h dx f x f x dx = ( , ) ( , ) . ... u( x 1 ,x 2 ,…x n ) = n i f xi dxi 1 ( , ) = ... ( ... ) 1, 2, n u x x x [ i n i f (xi , )]dx 1 = (3) 令 ( ) [ ( )] , 2 nI g D 等式成立条件为: 不倚赖于 2, , , ... n 但可能依赖于的常数 k 使 = − ( ( )) log ( ) , k g f i 证: I( ) = + 或 D = + ,不等式显然成立, = = = n i E u x x xn f xi dxi g 1 1, 2, ) , ... ( ... ( ) ( ) ,( 的无偏性) 由正则条件(1),(2)知 = = i n i g u x x xn f xi dx 1 1, 2, , ( ) ... ( ... ) [ ( , )] , 由于 ( ) f xi. 为 i 的密度函数, ( , ) = 1 + − i dxi f x + − = f (xi, )dxi 0 而 + − + − = = = ( , ) 0 ( ) . ( ) log ( , ) , i i i i i i i dx f x dx f x f x dx f x 且有 + − = ( , ) 0 log ( , ) ( ). i i i f x dx f x g ( i = 1,2,...n) ) = = = n i i n i i f x f x 1 1 . ( , ) log ( , )