Proof of the key property:dist(u)=l(s,u). โ Recall::dist(u)โฅl(S,u). โ Will show:dist(u)<l(s,u). R โ Take a shortest path p from s to u X Suppose p leaves R(for 1st time) by edge (x,y). [Claim]dist(y)=l(s,y). The part of p from s to y is a shortest path to y. Any prefix of a shortest path(su)is a shortest path itself (s-y) 0 dist(x)=l(s,x)since xE R. ๅฃ So dist(y)has been tightened to l(s,y)when x updates its neighbors So dist(u)=min dist(w)<dist(y)=l(s,y)<l(p). wโQ yโQ Claim partโคwhole 35Proof of the key property: ๐๐๐ ๐ก(๐ข) = ๐(๐ , ๐ข). โผ Recall: ๐๐๐ ๐ก ๐ข โฅ ๐(๐ , ๐ข). โผ Will show: ๐๐๐ ๐ก ๐ข โค ๐(๐ , ๐ข). โผ Take a shortest path ๐ from ๐ to ๐ข โผ Suppose ๐ leaves ๐
(for 1st time) by edge (๐ฅ, ๐ฆ). โผ [Claim] ๐๐๐ ๐ก(๐ฆ) = ๐(๐ , ๐ฆ). โ The part of ๐ from ๐ to ๐ฆ is a shortest path to ๐ฆ. โผ Any prefix of a shortest path (๐ โ ๐ข) is a shortest path itself (๐ โ ๐ฆ). โ ๐๐๐ ๐ก(๐ฅ) = ๐(๐ , ๐ฅ) since ๐ฅ โ ๐
. โ So ๐๐๐ ๐ก(๐ฆ) has been tightened to ๐(๐ , ๐ฆ) when ๐ฅ updates its neighbors โผ So ๐๐๐ ๐ก ๐ข = min ๐คโ๐ ๐๐๐ ๐ก ๐ค โค ๐๐๐ ๐ก ๐ฆ = ๐ ๐ , ๐ฆ โค ๐(๐). ๐ ๐ข ๐ฅ ๐ฆ ๐น ๐ ๐ธ ๐ฆ๏๐ Claim part โค whole 35