ๆญฃๅœจๅŠ ่ฝฝๅ›พ็‰‡...
Proof of the key property:dist(u)=l(s,u). โ– Recall::dist(u)โ‰ฅl(S,u). โ–  Will show:dist(u)<l(s,u). R โ–  Take a shortest path p from s to u X Suppose p leaves R(for 1st time) by edge (x,y). [Claim]dist(y)=l(s,y). The part of p from s to y is a shortest path to y. Any prefix of a shortest path(su)is a shortest path itself (s-y) 0 dist(x)=l(s,x)since xE R. ๅฃ So dist(y)has been tightened to l(s,y)when x updates its neighbors So dist(u)=min dist(w)<dist(y)=l(s,y)<l(p). wโˆˆQ yโˆˆQ Claim partโ‰คwhole 35Proof of the key property: ๐‘‘๐‘–๐‘ ๐‘ก(๐‘ข) = ๐‘™(๐‘ , ๐‘ข). โ—ผ Recall: ๐‘‘๐‘–๐‘ ๐‘ก ๐‘ข โ‰ฅ ๐‘™(๐‘ , ๐‘ข). โ—ผ Will show: ๐‘‘๐‘–๐‘ ๐‘ก ๐‘ข โ‰ค ๐‘™(๐‘ , ๐‘ข). โ—ผ Take a shortest path ๐‘ from ๐‘  to ๐‘ข โ—ผ Suppose ๐‘ leaves ๐‘… (for 1st time) by edge (๐‘ฅ, ๐‘ฆ). โ—ผ [Claim] ๐‘‘๐‘–๐‘ ๐‘ก(๐‘ฆ) = ๐‘™(๐‘ , ๐‘ฆ). โ‘ The part of ๐‘ from ๐‘  to ๐‘ฆ is a shortest path to ๐‘ฆ. โ—ผ Any prefix of a shortest path (๐‘  โ†’ ๐‘ข) is a shortest path itself (๐‘  โ†’ ๐‘ฆ). โ‘ ๐‘‘๐‘–๐‘ ๐‘ก(๐‘ฅ) = ๐‘™(๐‘ , ๐‘ฅ) since ๐‘ฅ โˆˆ ๐‘…. โ‘ So ๐‘‘๐‘–๐‘ ๐‘ก(๐‘ฆ) has been tightened to ๐‘™(๐‘ , ๐‘ฆ) when ๐‘ฅ updates its neighbors โ—ผ So ๐‘‘๐‘–๐‘ ๐‘ก ๐‘ข = min ๐‘คโˆˆ๐‘„ ๐‘‘๐‘–๐‘ ๐‘ก ๐‘ค โ‰ค ๐‘‘๐‘–๐‘ ๐‘ก ๐‘ฆ = ๐‘™ ๐‘ , ๐‘ฆ โ‰ค ๐‘™(๐‘). ๐‘  ๐‘ข ๐‘ฅ ๐‘ฆ ๐‘น ๐‘ ๐‘ธ ๐‘ฆ๏ƒŽ๐‘„ Claim part โ‰ค whole 35
<<ๅ‘ไธŠ็ฟป้กตๅ‘ไธ‹็ฟป้กต>>
©2008-็Žฐๅœจ cucdc.com ้ซ˜็ญ‰ๆ•™่‚ฒ่ต„่ฎฏ็ฝ‘ ็‰ˆๆƒๆ‰€ๆœ‰