正在加载图片...
第1章电磁学 請勿用於盈利之目的 勿向分量的平均值这个数学量仍有其实用意义,因此,我们就要来谈论电通量_这也是由 式(14)定义出来的.最后,不仅谈论通过一个完全 闭合面的通量,而且还谈论通过任一个有边界的面 的通量,这也是很有用处的.综上所述,通过这样一 矢量 个面的通量被定义为矢量的法向分量的平均值乘以 该面的面积,这些概念如图13所示 矢量场还有第二个性质,那是与一条曲线而不 坼直于面的分量是与一个面有关的.我们再来回顾一下描写液体流 动的那种速度场,也许会提出这样一个问题该液 体是否存在环流?这包含的意思是,是否有绕行某 一回线的净旋转运动?如图14所示,除在一条口 图1-3量场通过一个面的通量定义为 径均匀的闭合管子里的液体外,液体突然处处都被 矢量的法向分量的平均值乘以该面函积冻结了,也就是说,管外的液体都停止了流动但在 管内的那一部分液体,由于被禁锢着的动量(这就是 说,如果围绕管子朝一方的动量大于朝对方的),液 体仍叮继续流动.我们定义管里液体的净流速乘以 该管周长这个量为环流.我们再把上述概念加以引 伸就可对任一矢量场下个“环流”定义(即使没有任 何东西在流动也罢).对于任一矢量扬绝行低一想 象中的闭合曲线的环流可以定义为矢量(沿一致向 b 指)的平均切向分量乘以该回线的周长(图¥-6), 环流=(平均切向分量)·(环行距离).(1.5) 你将会看到,这一定义确实给出了一个正比于上述 迅逮被冻结的管子里的速度环流的数值 只要有两个概念——通量与环流—我们便能 、、立卸播述电学和磁学的所有各种定律.你可能不会 一下子就理解其意义,但它们将给你关于电磁方面 ∵::的物理学的最终描方式的一些概念 ∴∵,∵: 图14()液体中的速度场没想有一畿 面均匀,按照图()所示的任一闭合曲线安 合曲线 放着的管子假如液体只除管内的外处 图1-具矢量场的环施等于矢量 处都被冻结,那么管里的液体便将按图 (沿一致向指)的切向分量平均值 (c)所示的那样环流 乘以该回线的周长請 勿 用 於 盈 利 之 目 的
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有