正在加载图片...
士 定理2f(x)在点x0的泰勒级数,在U2(x0)内收 敛于∫(x)兮在U(x0)内lmRn(x)=0 n→0 证明必要性设f(x)能展开为泰勒级数, ∫(x)=∑ fo(o) i 0(x-x0)+Rn(x) i=0 王∴E(x=()--(x,ms1()-/(x) lim Rn (x)=limf()snI(x)=0 n→0 n→0 上页定 理 2 f (x)在 点x0的泰勒级数,在 ( ) U x0 内 收 敛 于 f (x)在 ( ) U x0 内lim ( ) = 0 → Rn x n . 证明 必要性 ( ) ( ) ! ( ) ( ) 0 0 0 ( ) x x R x i f x f x n i n i i =  − + =  ( ) ( ) ( ), Rn x = f x − sn+1 x 设f (x)能展开为泰勒级数, lim ( ) ( ) sn 1 x f x n + = →   = → lim R (x) n n lim[ ( ) ( )] f x sn 1 x n + → − = 0;
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有