正在加载图片...
.276 工程科学学报,第42卷,第3期 参考文献 管原位复合介孔材料的构建及其在锂离子电池中的应用.工程 科学学报,2019,41(4):489) [1]Houghton J,Santoro C.Soavi F,et al.Supercapacitive microbial [14]Pareek A,Sravan J S,Mohan S V.Fabrication of three- fuel cell:characterization and analysis for improved charge storage/delivery performance.Bioresour Techmol,2016,218:552 dimensional graphene anode for augmenting performance in microbial fuel cells.Carbon Resour Comvers,2019,2(2):134 [2]Liu Y F.Wang ZZ,Liu J B.et al.Direct scarlet simulated [15]Zhou L F,Qiu H M,Xu M,et al.Synthesis and electrochemical wastewater treatment by microbial fuel cell.J Oingdao Univ Sci properties of graphene/MnO composites.Chin Eng.2016, Technol Nat Sci Ed,2016,37(2):180 38(9):1300 (刘远烽,王在钊,刘建波,等.微生物燃料电池处理直接大红模 (周龙斐,邱红梅,徐美,等.石墨烯/二氧化锰复合材料的制备及 拟废水.青岛科技大学学报:自然科学版,2016,37(2):180) 其电化学性能.工程科学学报,2016,38(9):1300) [3]Liu Y F,Geng F H,Liu J B,et al.Study on treatment of copper- [16]Zhou S W.Lin M,Zhang Z C.et al.Biosynthetic graphene containing wastewater by microbial fuel cell.Emviron Pollur enhanced extracellular electron transfer for high performance Control,2017,39(2):185 anode in microbial fuel cell.Chemosphere,2019,232:396 (刘远峰,歌凤华,刘建波,等.微生物燃料电池处理含铜废水的 [17]Huang L H,Li X F,Ren Y P,et al.In-situ modified carbon cloth 研究.环境污染与防治,2017,39(2):185) with polyaniline/graphene as anode to enhance performance of [4]Liu Y F,Sun W,Gong L.Effect of electron acceptors on microbial fuel cell.Int J Hydrogen Energy,2016,41(26):11369 electricity generation property of MFC.Environ Pollut Control, [18]Paul D,Noori M T,Rajesh PP,et al.Modification of carbon felt 2016,38(11):84 anode with graphene oxide-zeolite composite for enhancing the (刘远峰,孙伟,宫磊.电子受体对微生物燃料电池产电性能的 performance of microbial fuel cell.Sustainable Energy Technol 影响.环境污染与防治,2016,38(11):84) Assessments,2018,26:77 [5]Slate A J.Whitehead K A,Brownson D A C.et al.Microbial fuel [19]Yu F,Wang C,Ma J.Capacitance-enhanced 3D graphene anode cells:an overview of current technology.Renewable Sustainable for microbial fuel cell with long-time electricity generation Energy Rev,,2019,101:60 stability.Electrochim Acta,2018,259:1059 [6]Sonawane J M,Yadav A,Ghosh PC,et al.Recent advantages in [20]Zhang L J,He W H,Yang J C,et al.Bread-derived 3D the development and utilization of modem anode materials for macroporous carbon foams as high performance free-standing high performance microbial fuel cells.Biosens Bioelectron,2017 anode in microbial fuel cells.Biosens Bioelectron,2018,122:217 90:558 [21]Lan L H,Li J,Feng Q.et al.Enhanced current production of the [7]Palanisamy G,Jung H Y,Sadhasivam T,et al.A comprehensive anode modified by microalgae derived nitrogen-rich biocarbon for review on microbial fuel cell technologies:Processes,utilization. microbial fuel cells.IntJ Hydrogen Energy.2019,45:3833 and advanced developments in electrodes and membranes.J [22]Chen Q,Pu W H,Hou H J,et al.Activated microporous Cleaner Prod,2019,221:598 mesoporous carbon derived from chestnut shell as a sustainable [8]Zhang X L,Fan W,Li H,et al.Extending cycling life of lithium- anode material for high performance microbial fuel cells. oxygen batteries based on novel catalytic nanofiber membrane and Bioresour Technol,2018,249:567 controllable screen-printed method.JMater Chem ,2018.6(43): [23]Chang S H,Liou J S,Liu J L,et al.Feasibility study of surface- 21458 modified carbon cloth electrodes using atmospheric pressure [9]Knupp W G.Ribeiro M S.Mir M,et al.Dynamics of plasma jets for microbial fuel cells.J Power Sources,2016,336: hydroxyapatite and carbon nanotubes interaction.Appl Surf Sci, 99 2019,495:143493 [24]Zhang X L,Fan W,Zhao S Y,et al.An efficient,bifunctional [10]Zhang P,Liu J,Qu Y P,et al.Enhanced performance of microbial catalyst for lithium-oxygen batteries obtained through tuning the fuel cell with a bacteria/multi-walled carbon nanotube hybrid exterior Co/Co*ratio of CoO,on N-doped carbon nanofibers. biofilm.J Power Sources,2017,361:318 Catal Sci Technol,2019,9:1998 [11]Ma H Y,Xia T,Bian CC,et al.Bacterial electroactivity and [25]Wei J C.Liang P,Huang X.Recent progress in electrodes for viability depends on carbon nanotube-coated sponge anode used in microbial fuel cells.Bioresour Technol,2011,102(20):9335 a microbial fuel cell.Bioelectrochemistry,2018,122:26 [26]Hindatu Y,Annuar M S M,Gumel A M.Mini-review:Anode [12]Iftimie S,Dumitru A.Enhancing the performance of microbial fuel modification for improved performance of microbial fuel cell cells(MFCs)with nitrophenyl modified carbon nanotubes-based Renewable Sustainable Energy Rev,2017,73:236 anodes.Appl Surf Sci,2019,492:661 [27]Yu B,Li Y H,Feng L.Enhancing the performance of soil [13]Guan LL,Lu J H,Lian F.Mesoporous composite of core-shell microbial fuel cells by using a bentonite-Fe and Fe:O modified FeS 2micron spheres with multi-walled CNTs and its application anode.J Hazard Mater,2019,377:70 in lithium ion batteries.Chin J Eng,2019,41(4):489 [28]Zeng L Z,Zhang W G,Xia P,et al.Porous Nio.Mno.9O1s (官亮亮,鲁建豪,连芳.具有核壳结构的FS2微米球与碳纳米 microellipsoids as high-performance anode electrocatalyst for参    考    文    献 Houghton J, Santoro C, Soavi F, et al. Supercapacitive microbial fuel  cell:  characterization  and  analysis  for  improved  charge storage/delivery performance. Bioresour Technol, 2016, 218: 552 [1] Liu  Y  F,  Wang  Z  Z,  Liu  J  B,  et  al.  Direct  scarlet  simulated wastewater  treatment  by  microbial  fuel  cell. J Qingdao Univ Sci Technol Nat Sci Ed, 2016, 37(2): 180 (刘远峰, 王在钊, 刘建波, 等. 微生物燃料电池处理直接大红模 拟废水. 青岛科技大学学报: 自然科学版, 2016, 37(2):180) [2] Liu Y F, Geng F H, Liu J B, et al. Study on treatment of copper￾containing  wastewater  by  microbial  fuel  cell. Environ Pollut Control, 2017, 39(2): 185 (刘远峰, 耿凤华, 刘建波, 等. 微生物燃料电池处理含铜废水的 研究. 环境污染与防治, 2017, 39(2):185) [3] Liu  Y  F,  Sun  W,  Gong  L.  Effect  of  electron  acceptors  on electricity  generation  property  of  MFC. Environ Pollut Control, 2016, 38(11): 84 (刘远峰, 孙伟, 宫磊. 电子受体对微生物燃料电池产电性能的 影响. 环境污染与防治, 2016, 38(11):84) [4] Slate A J, Whitehead K A, Brownson D A C, et al. Microbial fuel cells:  an  overview  of  current  technology. Renewable Sustainable Energy Rev, 2019, 101: 60 [5] Sonawane J M, Yadav A, Ghosh P C, et al. Recent advantages in the  development  and  utilization  of  modern  anode  materials  for high performance microbial fuel cells. Biosens Bioelectron, 2017, 90: 558 [6] Palanisamy G, Jung H Y, Sadhasivam T, et al. A comprehensive review  on  microbial  fuel  cell  technologies:  Processes,  utilization, and  advanced  developments  in  electrodes  and  membranes. J Cleaner Prod, 2019, 221: 598 [7] Zhang X L, Fan W, Li H, et al. Extending cycling life of lithium￾oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. J Mater Chem A, 2018, 6(43): 21458 [8] Knupp  W  G,  Ribeiro  M  S,  Mir  M,  et  al.  Dynamics  of hydroxyapatite  and  carbon  nanotubes  interaction. Appl Surf Sci, 2019, 495: 143493 [9] Zhang P, Liu J, Qu Y P, et al. Enhanced performance of microbial fuel  cell  with  a  bacteria/multi-walled  carbon  nanotube  hybrid biofilm. J Power Sources, 2017, 361: 318 [10] Ma  H  Y,  Xia  T,  Bian  C  C,  et  al.  Bacterial  electroactivity  and viability depends on carbon nanotube-coated sponge anode used in a microbial fuel cell. Bioelectrochemistry, 2018, 122: 26 [11] Iftimie S, Dumitru A. Enhancing the performance of microbial fuel cells  (MFCs)  with  nitrophenyl  modified  carbon  nanotubes-based anodes. Appl Surf Sci, 2019, 492: 661 [12] Guan  L  L,  Lu  J  H,  Lian  F.  Mesoporous  composite  of  core-shell FeS_2micron spheres with multi-walled CNTs and its application in lithium ion batteries. Chin J Eng, 2019, 41(4): 489 (官亮亮, 鲁建豪, 连芳. 具有核壳结构的FeS_2微米球与碳纳米 [13] 管原位复合介孔材料的构建及其在锂离子电池中的应用. 工程 科学学报, 2019, 41(4):489) Pareek  A,  Sravan  J  S,  Mohan  S  V.  Fabrication  of  three￾dimensional  graphene  anode  for  augmenting  performance  in microbial fuel cells. Carbon Resour Convers, 2019, 2(2): 134 [14] Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties  of  graphene/MnO2 composites. Chin J Eng,  2016, 38(9): 1300 (周龙斐, 邱红梅, 徐美, 等. 石墨烯/二氧化锰复合材料的制备及 其电化学性能. 工程科学学报, 2016, 38(9):1300) [15] Zhou  S  W,  Lin  M,  Zhang  Z  C,  et  al.  Biosynthetic  graphene enhanced  extracellular  electron  transfer  for  high  performance anode in microbial fuel cell. Chemosphere, 2019, 232: 396 [16] Huang L H, Li X F, Ren Y P, et al. In-situ modified carbon cloth with  polyaniline/graphene  as  anode  to  enhance  performance  of microbial fuel cell. Int J Hydrogen Energy, 2016, 41(26): 11369 [17] Paul D, Noori M T, Rajesh P P, et al. Modification of carbon felt anode  with  graphene  oxide-zeolite  composite  for  enhancing  the performance  of  microbial  fuel  cell. Sustainable Energy Technol Assessments, 2018, 26: 77 [18] Yu  F,  Wang  C,  Ma  J.  Capacitance-enhanced  3D  graphene  anode for  microbial  fuel  cell  with  long-time  electricity  generation stability. Electrochim Acta, 2018, 259: 1059 [19] Zhang  L  J,  He  W  H,  Yang  J  C,  et  al.  Bread-derived  3D macroporous  carbon  foams  as  high  performance  free-standing anode in microbial fuel cells. Biosens Bioelectron, 2018, 122: 217 [20] Lan L H, Li J, Feng Q, et al. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int J Hydrogen Energy, 2019, 45: 3833 [21] Chen  Q,  Pu  W  H,  Hou  H  J,  et  al.  Activated  microporous￾mesoporous  carbon  derived  from  chestnut  shell  as  a  sustainable anode  material  for  high  performance  microbial  fuel  cells. Bioresour Technol, 2018, 249: 567 [22] Chang S H, Liou J S, Liu J L, et al. Feasibility study of surface￾modified  carbon  cloth  electrodes  using  atmospheric  pressure plasma jets for microbial fuel cells. J Power Sources, 2016, 336: 99 [23] Zhang  X  L,  Fan  W,  Zhao  S  Y,  et  al.  An  efficient,  bifunctional catalyst  for  lithium-oxygen  batteries  obtained  through  tuning  the exterior  Co2+/Co3+ ratio  of  CoOx on  N-doped  carbon  nanofibers. Catal Sci Technol, 2019, 9: 1998 [24] Wei  J  C,  Liang  P,  Huang  X.  Recent  progress  in  electrodes  for microbial fuel cells. Bioresour Technol, 2011, 102(20): 9335 [25] Hindatu  Y,  Annuar  M  S  M,  Gumel  A  M.  Mini-review:  Anode modification  for  improved  performance  of  microbial  fuel  cell. Renewable Sustainable Energy Rev, 2017, 73: 236 [26] Yu  B,  Li  Y  H,  Feng  L.  Enhancing  the  performance  of  soil microbial  fuel  cells  by  using  a  bentonite-Fe  and  Fe3O4 modified anode. J Hazard Mater, 2019, 377: 70 [27] Zeng  L  Z,  Zhang  W  G,  Xia  P,  et  al.  Porous  Ni0.1Mn0.9O1.45 microellipsoids  as  high-performance  anode  electrocatalyst  for [28] · 276 · 工程科学学报,第 42 卷,第 3 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有