正在加载图片...
Cauchy积分公式 第3页 §42解析函数的高阶导数 从 Cauchy积分公式,可以推断出一个重要结论:如果f(z) 在G中解析,则在G内f(z)的任何阶导数f(m)(2)均存在 并且 f(n(2)=2ni 其中C是G的正向边界,z为G内任意一点,如图43 证首先求f(2).因为 -( o-f(s2 dc h c 1 f() (-z-h)(-z 图4.3高阶导数公式 取极限h→0,左端即为f(z),而右端被积函数的极限为f(/(-2)2.为了证明在积分号下求 极限合法,不妨考察 =:1=5-(=-: 由于f()在C上连续,故在C上有|f()≤M,设z到C的最短距离为6,l为C的长度,则有 f0-a- (-z-h)(-z (+24(≤h (6-|) 因此,积分号下求极限合法, f(a) 同样,可以求出 f"(z) f(a+h)-f(z) f() f() dc 2(-2z-h h→027 )2(-2)2 f(S)ds=2i c-2)3 如此继续,即可求出f(n)(z).口 ★这个结果说明,一个复变函数,只要在一个区域中一阶导数处处存在(因此是区域內的解析 函数),则它的任何阶导数都存在,并且都是这个区域内的解析函数 ★在实变函数中并非如此.我们并不能由f(x)的存在推断出f"(x)的存在 复变函数中f(2)在一区域中处处可导(即解析)是一个很高的要求实变函数中f(x)的存 在只包含当x在数轴上(一定区间内)变化时对f(x)的要求,而复变函数中f(2)的存在则 包含了在二维平面区域上对f(x)的要求Wu Chong-shi ￾✁✂ (✄) Cauchy ☎✆✝✞ ✟ 3 ✠ §4.2 ➳➵➸➺➻➼➽➾➺ ➚ Cauchy ✿✳➌➍✰❡ ➃➪➶➠ ✻➂➹q❭➘➦➀❪ f(z) ❆ G ★ ✬✭✰✽❆ G ✺ f(z) ✩➴➷➬➮✯ f (n) (z) ➱✃❆✰ ❐➧ f (n) (z) = n! 2π i I C f(ζ) (ζ − z) n+1 dζ, ✾ ★ C ✥ G ✩❂ ❃✱✲✰ z ✹ G ✺➴❒✻✼✰➀❊ 4.3 ❄ ❅ ❮❰➟ f 0 (z) ❄❣✹ f(z + h) − f(z) h = 1 2π i 1 h I C  f(ζ) ζ − z − h − f(ζ) ζ − z  dζ = 1 2π i I C f(ζ) (ζ − z − h)(ζ − z) dζ, ◗ 4.3 ÏÐÑÒ❨❩ Ó ➡➢ h → 0 ✰ÔÕ❾ ✹ f 0 (z) ✰↕ÖÕ×✿ ✮✯✩➡➢✹ f(ζ)/(ζ − z) 2 ❄✹Ø❦ Ù❆ ✿✳ÚÛ➟ ➡➢✉Ü✰ÝÞßà I C f(ζ) dζ (ζ − z − h)(ζ − z) − I C f(ζ) dζ (ζ − z) 2 = h I C f(ζ) dζ (ζ − z − h)(ζ − z) 2 . ❤♦ f(ζ) ❆ C ① ▲á✰❞❆ C ① P |f(ζ)| ≤ M ✰ ✤ z ➙ C ✩âãäå✹ δ ✰ l ✹ C ✩æç✰✽P I C f(ζ) (ζ − z − h)(ζ − z) dζ − I C f(ζ) (ζ − z) 2 dζ ≤ |h| · Ml δ 2(δ − |h|) → 0, ❣ ❬✰✿✳ÚÛ➟ ➡➢✉Ü✰ f 0 (z) = 1 2π i I C f(ζ) (ζ − z) 2 dζ. è➉✰❡➃ ➟➠ f 00(z) = lim h→0 f 0 (z + h) − f 0 (z) h = lim h→0 1 2π i 1 h I C  f(ζ) (ζ − z − h) 2 − f(ζ) (ζ − z) 2  dζ = lim h→0 1 2π i I C 2ζ − 2z − h (ζ − z − h) 2(ζ − z) 2 f(ζ)dζ = 2! 2π i I C f(ζ) (ζ − z) 3 dζ. ➀❬éá✰❾❡➟➠ f (n) (z) ❄ F ➈ ➂ ❭❪ê Ù✰✻➂❑ë✮✯✰➑q❆ ✻➂✦✧ ★✻➬➮✯➲➲✃ ❆ (ìíî ïð ñòóô õö) ✰✽÷✩➴➷➬➮✯ø✃ ❆✰❐➧ø✥ ➈ ➂✦✧ ✺✩✬✭✮✯❄ F ❆ùë✮✯ ★ ❐ú➀❬❄ûü❐Ýý ❤ f 0 (x) ✩✃❆ ➪➶➠ f 00(x) ✩✃❆ ❄ F ❑ë✮✯ ★ f(z) ❆ ✻✦✧ ★ ➲➲❡➮ (❾✬✭) ✥✻➂þÿ✩q➟❄ ùë✮✯ ★ f 0 (x) ✩✃ ❆➑ ④￾ ➔ x ❆✯✁ ① (✻◆✦✂ ✺) ë✄ ❻ ♥ f(x) ✩ q➟✰↕❑ë✮✯ ★ f 0 (z) ✩✃❆✽ ④￾Ø ❆☎✆✝✞✦✧①♥ f(z) ✩ q➟❄
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有