正在加载图片...
68 工程科学学报,第42卷,第1期 sorption onto natural microbial mats.Chem Geol,2005,219(1-4): Agrobacterium sp.HN1.J Rare Earths,2011,29(3):265 53 [60]Palmieri M C,Garcia Jr O,Melnikov P.Neodymium biosorption [45]Moriwaki H,Koide R,Yoshikawa R,et al.Adsorption of rare from acidic solutions in batch system.Process Biochem,2000, earth ions onto the cell walls of wild-type and lipoteichoic acid- 36(5):441 defective strains of Bacillus subtilis.Appl Microbiol Biotechnol, [61]Vlachou A,Symeopoulos B D,Koutinas AA.A comparative 2012,97(8):3721 study of neodymium sorption by yeast cells.Radiochim Acta, [46]Maleke M,Valverde A,Vermeulen J G,et al.Biomineralization 2009,97(8):437 and bioaccumulation of europium by a thermophilic metal resistant [62]Hosomomi Y,Baba Y,Kubota F,et al.Biosorption of rare earth bacterium.Front Microbiol,2019,10:81 elements by Escherichia coli.J Chem Eng Jpn,2013,46(7):450 [47]Hassanoen W A G,Desouky O A N,Hussien S S E.Bioleaching [63]Wang H Q.Studies on Adsorption of the Rare Earth Ions by of some rare earth elements from Egyptian monazite using Phanerochaete Chrysosporium[Dissertation].Zhengzhou:Henan Aspergillus ficum and Pseudomonas aeruginosa.WalailakJ Sci Agricultural University,2008 Technol,2014,11(9):809 (王慧琴.黄孢原毛平革菌对稀土离子的吸附作用研究学位论 [48]Corbett M K,Eksteen JJ,Niu X Z,et al.Interactions of phosphate 文]郑州:河南农业大学,2008) solubilising microorganisms with natural rare-earth phosphate [64]Wen J K,Yao G C,Chen B W,et al.Effect of temperature on the minerals:a study utilizing Western Australian monazite. activity of mineral-bioleaching microorganisms and the Bioprocess Biosyst Eng,2017,40(6):929 bioleaching rate of copper.J Univ Sci Technol Beijing,2009. [49]Desouky O A,El-Mougith AA.Hassanien W A,et al.Extraction 31(3):295 of some strategic elements from thorium-uranium concentrate us- (温建康,姚国成,陈勃伟,等.温度对浸矿微生物活性及铜浸出 ing bioproducts of Aspergillus ficuum and Pseudomonas 率的影响.北京科技大学学报,2009,31(3):295) aeruginosa.Arabian J Chem,2016,9(Suppl 1):S795 [65]Fathollahzadeh H,Hackett M J,Khaleque H N,et al.Better [50]Feng M H,Ngwenya BT.Wang L,et al.Bacterial dissolution of together:Potential of co-culture microorganisms to enhance fluorapatite as a possible source of elevated dissolved phosphate in bioleaching of rare earth elements from monazite.Bioresour the environment.Geochim Cosmochim Acta,2011,75(19):5785 Technol Rep,2018,3:109 [51]Kim Y,Bae B.Choung Y K.Optimization of biological [66]Brandl H,Faramarzi M A.Microbe-metal-interactions for the phosphorus removal from contaminated sediments with phosphate- biotechnological treatment of metal-containing solid waste.China solubilizing microorganisms.JBiosci Bioeng,00,99(1):23 Particuology,2006,4(2):93 [52]Zhang L M,Dong HL.Liu Y,et al.Bioleaching of rare earth [67]Liu Y,Hou Z Q.A synthesis of mineralization styles with an elements from bastnaesite-bearing rock by actinobacteria.Chem integrated genetic model of carbonatite-syenite-hosted REE Geol,2018,483:544 deposits in the Cenozoic Mianning-Dechang REE metallogenic [53]Liang CL,Duan M J,Chen LK,et al.Biosorption of yttrium base belt,the eastern Tibetan Plateau,southwestern China.J Asian heavy rare earth ions by Serratia marcescens.J Chin Soc Rare Earth Sci,2017,137:35 Earths,,2018,36(3):328 [68]Shin D,Kim J,Kim B S,et al.Use of phosphate solubilizing (梁长利,段敏静,陈陵康,等.粘质沙雷氏菌对重钇稀土离子的 bacteria to leach rare earth elements from monazite-bearing ore. 生物吸附.中国稀土学报,2018,36(3):328) inerals,.2015,5(2):189 [54]Qu Y,Lian B.Bioleaching of rare earth and radioactive elements [69]Binnemans K,Jones P T,Blanpain B,et al.Recycling of rare from red mud using Penicillium tricolor RM-10.Bioresour earths:a critical review.J Cleaner Prod,2013,51:1 Technol,.2013,136:16 [70]Tkaczyk A H,Bartl A,Amato A,et al.Sustainability evaluation of [55]Tsuruta T.Selective accumulation of light or heavy rare earth essential critical raw materials:cobalt,niobium,tungsten and rare elements using gram-positive bacteria.Colloids Surf B,2006, earth elements.JPlrys DApp/Phys,2018,51(20):203001 52(2):117 [71]Hopfe S,Flemming K,Lehmann F,et al.Leaching of rare earth [56]Binnemans K,Jones P T,Blanpain B,et al.Towards zero-waste elements from fluorescent powder using the tea fungus Kombucha. valorisation of rare-earth-containing industrial process residues:a Waste Manage,2017,62:211 critical review.J Cleaner Prod,2015,99:17 [72]Marra A,Cesaro A,Rene E R,et al.Bioleaching of metals from [57]Andres Y,Thouand G,Boualam M,et al.Factors influencing the WEEE shredding dust.J Environ Manage,2018,210:180 biosorption of gadolinium by micro-organisms and its mobilisation [73]Reed D W,Fujita Y,Daubaras DL,et al.Bioleaching of rare earth from sand.Appl Microbiol Biotechnol,2000,54(2):262 elements from waste phosphors and cracking catalysts [58]Kazy S K,Das S K,Sar P.Lanthanum biosorption by a Hydrometallurgy,2016,166:34 Pseudomonas sp.:equilibrium studies and chemical [74]Klauber C,Grafe M,Power G.Bauxite residue issues:II.options characterization.J Ind Microbiol Biotechnol,2006.33(9):773 for residue utilization.Hydrometallurgy,2011,108(1-2):11 [59]Xu S X,Zhang S M,Chen K,et al.Biosorption of La"and Ce"by [75]Yin S H,Wang L M,Wu A X,et al.Progress of research in coppersorption onto natural microbial mats. Chem Geol, 2005, 219(1-4): 53 Moriwaki H, Koide R, Yoshikawa R, et al. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid￾defective strains of Bacillus subtilis. Appl Microbiol Biotechnol, 2012, 97(8): 3721 [45] Maleke M, Valverde A, Vermeulen J G, et al. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium. Front Microbiol, 2019, 10: 81 [46] Hassanoen W A G, Desouky O A N, Hussien S S E. Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol, 2014, 11(9): 809 [47] Corbett M K, Eksteen J J, Niu X Z, et al. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. Bioprocess Biosyst Eng, 2017, 40(6): 929 [48] Desouky O A, El-Mougith A A, Hassanien W A, et al. Extraction of some strategic elements from thorium–uranium concentrate us￾ing bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arabian J Chem, 2016, 9(Suppl 1): S795 [49] Feng M H, Ngwenya B T, Wang L, et al. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment. Geochim Cosmochim Acta, 2011, 75(19): 5785 [50] Kim Y, Bae B, Choung Y K. Optimization of biological phosphorus removal from contaminated sediments with phosphate￾solubilizing microorganisms. J Biosci Bioeng, 2005, 99(1): 23 [51] Zhang L M, Dong H L, Liu Y, et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem Geol, 2018, 483: 544 [52] Liang C L, Duan M J, Chen L K, et al. Biosorption of yttrium base heavy rare earth ions by Serratia marcescens. J Chin Soc Rare Earths, 2018, 36(3): 328 (梁长利, 段敏静, 陈陵康, 等. 粘质沙雷氏菌对重钇稀土离子的 生物吸附. 中国稀土学报, 2018, 36(3):328 ) [53] Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol, 2013, 136: 16 [54] Tsuruta T. Selective accumulation of light or heavy rare earth elements using gram-positive bacteria. Colloids Surf B, 2006, 52(2): 117 [55] Binnemans K, Jones P T, Blanpain B, et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Cleaner Prod, 2015, 99: 17 [56] Andrès Y, Thouand G, Boualam M, et al. Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Appl Microbiol Biotechnol, 2000, 54(2): 262 [57] Kazy S K, Das S K, Sar P. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol, 2006, 33(9): 773 [58] Xu S X, Zhang S M, Chen K, et al. Biosorption of La3+ and Ce3+ [59] by Agrobacterium sp. HN1. J Rare Earths, 2011, 29(3): 265 Palmieri M C, Garcia Jr O, Melnikov P. Neodymium biosorption from acidic solutions in batch system. Process Biochem, 2000, 36(5): 441 [60] Vlachou A, Symeopoulos B D, Koutinas A A. A comparative study of neodymium sorption by yeast cells. Radiochim Acta, 2009, 97(8): 437 [61] Hosomomi Y, Baba Y, Kubota F, et al. Biosorption of rare earth elements by Escherichia coli. J Chem Eng Jpn, 2013, 46(7): 450 [62] Wang H Q. Studies on Adsorption of the Rare Earth Ions by Phanerochaete Chrysosporium[Dissertation]. Zhengzhou: Henan Agricultural University, 2008 (王慧琴. 黄孢原毛平革菌对稀土离子的吸附作用研究[学位论 文]. 郑州: 河南农业大学, 2008) [63] Wen J K, Yao G C, Chen B W, et al. Effect of temperature on the activity of mineral-bioleaching microorganisms and the bioleaching rate of copper. J Univ Sci Technol Beijing, 2009, 31(3): 295 (温建康, 姚国成, 陈勃伟, 等. 温度对浸矿微生物活性及铜浸出 率的影响. 北京科技大学学报, 2009, 31(3):295 ) [64] Fathollahzadeh H, Hackett M J, Khaleque H N, et al. Better together: Potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresour Technol Rep, 2018, 3: 109 [65] Brandl H, Faramarzi M A. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology, 2006, 4(2): 93 [66] Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J Asian Earth Sci, 2017, 137: 35 [67] Shin D, Kim J, Kim B S, et al. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals, 2015, 5(2): 189 [68] Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: a critical review. J Cleaner Prod, 2013, 51: 1 [69] Tkaczyk A H, Bartl A, Amato A, et al. Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. J Phys D Appl Phys, 2018, 51(20): 203001 [70] Hopfe S, Flemming K, Lehmann F, et al. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manage, 2017, 62: 211 [71] Marra A, Cesaro A, Rene E R, et al. Bioleaching of metals from WEEE shredding dust. J Environ Manage, 2018, 210: 180 [72] Reed D W, Fujita Y, Daubaras D L, et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 2016, 166: 34 [73] Klauber C, Grafe M, Power G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy, 2011, 108(1-2): 11 [74] [75] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper · 68 · 工程科学学报,第 42 卷,第 1 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有