正在加载图片...
一47一 26 周5 周6 二、采利柯夫与柯洛透夫所給求轧糯彈性变性区受度 的方法的错强 利用赫茲公式: b=8(1-)rPor TE 去計算礼鲲的跟性变形,是-一个正确的方向。在这个公式中r很明显地,应該取轧就的 牛徑。所以这个公式是秀利用得合理,关键就在b与P。的们是否取得接近于第三图所 示的情况。 在采利柯夫的方法中,以x。(見第:图〉作为山,所以他所推荐的公式是(3)。 在图二中,由于札罐的彈性变形,使BC弧变为DC粮,其長度为xo,因此很容易错 腿地認为由札鶉的彈性变形仅产生了xo实际上AB弧变为AD以及BC弧变为DC都是由 札视的珮性变形所产生的,所以轧妮彈性变性区的全長是1。或接近于/。。所以应当取 受作为赫兹公式中的b,这虽然他是个假改们可以腿为是此较接近事实的。敏之取 Xo作为b要准确得多。 在柯洛途夫的常作中,·方面接受了采利柯尖青中的方法,取。为b,同时又取杂部 接触而积上的本均压力代入赫兹公式中,这显然是錯誤的。二米不是州对应的,与第三 图中b和接触面上的Pc的关系相煮很远。当彈性:变形的量很小时,×。按近丁等,这时 由赫盛公式,Pc里与。成正比,也应当接近于霁,可是按礼件来看,实际上,Py不是 趋近于常,而是趋近于不计节那作变形时的不均压力Kh染y(你儿()广-] 这样的矛所即是由丁錯误地取x。为b而产生的。 本女的作者在研究这个間题的过程中锌經考感过仍取x。作为赫兹公式中的b但取第 二图中DC糠上的本均压力作为P心P。根据这样的假微,虽然二者是相对应的,此較楼近 于第三图所表示的情况。但是当x。趋近于零时DC線上的千均压力仍不趋近于霁(而趋一 一 圈 周 二 、 采利柯夫与 柯洛遗夫所始求轧 棍弹性变性区畏度 的 方法的错簇 利 用赫效公式 一 。 代 去 升算札视 的弹性 变 形 , 是 一 个正确 的 方向 。 在拉 个 公式 中 很 明 显 地 , 应孩取札棍 的 半视 。 所 以这 个公式 是否利 用得合理 , 关键就在 与 。 , 的植是否 取 得接近于 第三图所 示 的 ‘清况 。 在采利柯夫 的 方法 中 , 以 。 兑 第二 图 作 为 , 所 以他所推荐 的公式 是 。 在 图二 中 , 由 一 于札 帆的弹性变 形 , 使 弧变 为 腺 , 其畏 度为 。 , 因 此很容 易错 羡地豁 为 由札帆 的弹性变 形仅产生 了 。 。 实际 卜 弧变 为 以 及 弧变 为 都是 由 札 辘的潭性 变形所 产生 的 , 所以札 鱿弹性变性 区 的蚕畏 是 。 或接近 于 。 。 所 以 应 当取 一 子 作 为赫“ 公式 中的 ” , 这 虽然 也 是 一 个假设 但可 以韶 为是 “ 较接近事实 的 。 、 之取 。 作 为 要准确 得 多 。 在柯 洛潦夫 的著 作 中 , 一 方面接 受 了采利 柯夫奢 中的 方法 , 取 为 , 同 时又取 桑部 接触面 积 几 的平均 压 力代入 赫兹公式 中 , 这显然 是错改的 。 二者不 是州 对 应 的 , 一 与第三 图 中 和接触面 卜的 的 关 系胡 差 很抚 。 当 浑性变形 的量很小 时 , 、 。 接近 于零 , 扮时 由赫兹公式 , 。 , 与 。 成 正此 , 也 应 当接近 二 零 , 可 是按札件 来着 , 实际 , 。 , 不 是 , 一 一 、 一、 、 , ,, , , , , 二 。 一 , , , , 场 、厂 二 、 〕 趋近于零 , 而 是趋近于不 针算弹性 变 形 时 的平均 压 力 百五临兰 了气寸少又 一 拼 一 , 一 这样 的矛 盾即 是 由 于错淡地取 为 而 产生 的 。 本文 的作者在研究这 个筒题 的过程 中曹翘考虑过仍取 作 为赫兹公式 中的 但取 第 二图 中 腺上 的平均压 力作为 。 。 。 根据这样 的假 没 , 虽然 二者 是相 对应 的 , 此较接近 于 第三 图所表 示 的情况 。 但是 当 趋近 于零时 腺上 的干均 压 力仍 不 趋近 于零 而趋
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有