正在加载图片...
崔传智等:低矿化度水驱中的微粒运移机理及其开发效果 ·729· 0.8 Angeles,1967:SPE-725-MS 0.7 Muecke T W.Formation fines and factors controlling their move- ment in porous media.Petrol Technol,1979,31(2):144 0.6 [6]Bedrikovetsky P,Zeinijahromi A,Siqueira F D,et al.Particle 0.5 detachment under velocity alternation during suspension transport 一低矿化度水驱 in porous media.Transp Porous Media,2012,91 (1)173 0.4 一高矿化度水驱 Yuan H,Shapiro A A.Induced migration of fines during water- 0.3 flooding in communicating layer-cake reservoirs.J Petrol Sci Eng, 0.2 2011,78(34):618 8]Zeinijahromi A,Nguyen T K P,Bedrikovetsky P.Mathematical 0.1 model for fines-migration-assisted waterflooding with induced for- 4 10 12 mation damage.SPE J,2013,18(3)518 无因次注入孔隙体积倍数 9] Yuan B,Moghanloo R G.Zheng D.Enhanced oil recovery by 图14高矿化度水驱与低矿化度水驱采出程度对比 combined nanofluid and low salinity water flooding in multiayer Fig.14 Comparison of high salinity waterflooding and low salinity heterogeneous reservoirs SPE Annual Technical Conference and waterflooding degree of reserve recovery Exhibition.Dubai,2016:SPE81392-MS [10]Wu J,Chang Y W,Li J,et al.Mechanisms of low salinity wa- 右.这是由于低矿化度水注入油藏后,吸水量较多 terflooding enhanced oil recovery and its application.I Southwest 的高渗层产生微粒运移与封堵作用,水流更多地分 Petrol Univ Sci Technol Ed,2015,37(5):145 (吴剑,常毓文,李嘉,等.低矿化度水驱技术增产机理与适 配到水驱波及程度较小中、低渗层,中、低渗层动用 用条件.西南石油大学学报(自然科学版),2015,37(5): 程度增大,水驱波及系数得以扩大,继而提高了原油 145) 采收率。 01] Lee S Y,Webb K J,Collins I R,et al.Low salinity oil recovery- 4结论 increasing understanding of the underlying mechanisms of double layer expansion I0R 201146th European Symposium on Im- (1)黏土的稳定性与注入水矿化度、离子价型 proved Oil Recovery.Cambridge,2011 等性质密切相关.降低注入水矿化度和离子价型, [12]Van Olphen H.Clay Colloid Chemistry Introduction.Beijing: Agricultural Press,1982 可引起黏土扩算双电层膨胀与zta电势升高,从而 (H.范·奥尔芬.粘土胶体化学导论.北京:农业出版社, 改变黏土颗粒的受力平衡并使微粒发生运移,造成 1982) 地层渗透率下降. [13]Xie Q,Saeedi A,Pooryousefy E,et al.Extended DLVO-ased (2)油田水驱开发过程中储层伤害现象是不可 estimates of surface force in low salinity water flooding.I Mol 避免的,但合理利用储层伤害机理一定程度上可以 Lig,2016,221:658 [14]Zeinijahromi A,AlJassasi H,Begg S,et al.Improving sweep 起到调剖堵水与缓解层间矛盾的效果,最终提高原 efficiency of edge-water drive reservoirs using induced formation 油采收率 damage.J Petrol Sci Eng,2015,130:123 (3)纵向非均质油藏高含水期进行低矿化度水 [15]Yang G,Chen T,Zhao J,et al.Desorption mechanism of as- 驱,能有效缓解层间突进问题,扩大水驱波及系数, phaltenes in the presence of electrolyte and the extended Derjagu- 提高综合动用程度,达到提高采收率的效果. in-Landau-Verwey-Overbeek theory.Energy Fuels,2015,29 (7):4272 6 Tokunaga T K.DLVO-based estimates of adsorbed water film 参考文献 thicknesses in geologic C02 reservoirs.Langmuir,2012,28 (21):8001 [Sheng JJ.Critical review of low-salinity waterflooding.J Petrol [17]Doukkali M,Patel R B.Stepanov V,et al.The effect of ionie Sei Eng,2014,120:216 strength and pH on the electrostatic stabilization of nanoRDX ]Tang GQ,Morrow N R.Salinity,temperature,oil composition, Propell Explos Pyrotech,2017,42(9):1066 and oil recovery by waterflooding.SPE Reserr Eng,1997,12 [18]Hunter R J.Foundations of Colloid Science.Oxford:Oxford Uni- (4):269 versity Press,2001 B]Khilar KC,Fogler H S.The existence of a critical salt concentra- [19]Israelachvili J N,Chu B.Intermolecular and Surface Forces with tion for particle release.J Colloid Interface Sci,1984,101 (1): Applications to Colloidal and Biological Systems.Colloid Inter- 214 face Sci,1987,116(1):77 4]Bernard GG.Effect of floodwater salinity on recovery of oil from D20]Busireddy C,Rao D N.Application of DLVO theory to character- cores containing clays /SPE California Regional Meeting.Los ize spreading in crude oil-brine-rock systems /SPE/DOE Sym-崔传智等: 低矿化度水驱中的微粒运移机理及其开发效果 图 14 高矿化度水驱与低矿化度水驱采出程度对比 Fig. 14 Comparison of high salinity waterflooding and low salinity waterflooding degree of reserve recovery 右. 这是由于低矿化度水注入油藏后,吸水量较多 的高渗层产生微粒运移与封堵作用,水流更多地分 配到水驱波及程度较小中、低渗层,中、低渗层动用 程度增大,水驱波及系数得以扩大,继而提高了原油 采收率. 4 结论 ( 1) 黏土的稳定性与注入水矿化度、离子价型 等性质密切相关. 降低注入水矿化度和离子价型, 可引起黏土扩算双电层膨胀与 zeta 电势升高,从而 改变黏土颗粒的受力平衡并使微粒发生运移,造成 地层渗透率下降. ( 2) 油田水驱开发过程中储层伤害现象是不可 避免的,但合理利用储层伤害机理一定程度上可以 起到调剖堵水与缓解层间矛盾的效果,最终提高原 油采收率. ( 3) 纵向非均质油藏高含水期进行低矿化度水 驱,能有效缓解层间突进问题,扩大水驱波及系数, 提高综合动用程度,达到提高采收率的效果. 参 考 文 献 [1] Sheng J J. Critical review of low-salinity waterflooding. J Petrol Sci Eng,2014,120: 216 [2] Tang G Q,Morrow N R. Salinity,temperature,oil composition, and oil recovery by waterflooding. SPE Reserv Eng,1997,12 ( 4) : 269 [3] Khilar K C,Fogler H S. The existence of a critical salt concentra￾tion for particle release. J Colloid Interface Sci,1984,101 ( 1) : 214 [4] Bernard G G. Effect of floodwater salinity on recovery of oil from cores containing clays / / SPE California Regional Meeting. Los Angeles,1967: SPE-1725-MS [5] Muecke T W. Formation fines and factors controlling their move￾ment in porous media. J Petrol Technol,1979,31( 2) : 144 [6] Bedrikovetsky P,Zeinijahromi A,Siqueira F D,et al. Particle detachment under velocity alternation during suspension transport in porous media. Transp Porous Media,2012,91( 1) : 173 [7] Yuan H,Shapiro A A. Induced migration of fines during water￾flooding in communicating layer-cake reservoirs. J Petrol Sci Eng, 2011,78( 3-4) : 618 [8] Zeinijahromi A,Nguyen T K P,Bedrikovetsky P. Mathematical model for fines-migration-assisted waterflooding with induced for￾mation damage. SPE J,2013,18( 3) : 518 [9] Yuan B,Moghanloo R G,Zheng D. Enhanced oil recovery by combined nanofluid and low salinity water flooding in multi-layer heterogeneous reservoirs / / SPE Annual Technical Conference and Exhibition. Dubai,2016: SPE-181392-MS [10] Wu J,Chang Y W,Li J,et al. Mechanisms of low salinity wa￾terflooding enhanced oil recovery and its application. J Southwest Petrol Univ Sci Technol Ed,2015,37( 5) : 145 ( 吴剑,常毓文,李嘉,等. 低矿化度水驱技术增产机理与适 用条件. 西南石油大学学报( 自然科学版) ,2015,37 ( 5) : 145) [11] Lee S Y,Webb K J,Collins I R,et al. Low salinity oil recovery-- increasing understanding of the underlying mechanisms of double layer expansion / / IOR 2011-16th European Symposium on Im￾proved Oil Recovery. Cambridge,2011 [12] Van Olphen H. Clay Colloid Chemistry Introduction. Beijing: Agricultural Press,1982 ( H. 范·奥尔芬. 粘土胶体化学导论. 北京: 农业 出 版 社, 1982) [13] Xie Q,Saeedi A,Pooryousefy E,et al. Extended DLVO-based estimates of surface force in low salinity water flooding. J Mol Liq,2016,221: 658 [14] Zeinijahromi A,Al-Jassasi H,Begg S,et al. Improving sweep efficiency of edge-water drive reservoirs using induced formation damage. J Petrol Sci Eng,2015,130: 123 [15] Yang G,Chen T,Zhao J,et al. Desorption mechanism of as￾phaltenes in the presence of electrolyte and the extended Derjagu￾in--Landau--Verwey--Overbeek theory. Energy Fuels,2015,29 ( 7) : 4272 [16] Tokunaga T K. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs. Langmuir,2012,28 ( 21) : 8001 [17] Doukkali M,Patel R B,Stepanov V,et al. The effect of ionic strength and pH on the electrostatic stabilization of nanoRDX. Propell Explos Pyrotech,2017,42( 9) : 1066 [18] Hunter R J. Foundations of Colloid Science. Oxford: Oxford Uni￾versity Press,2001 [19] Israelachvili J N,Chu B. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems. J Colloid Inter￾face Sci,1987,116( 1) : 77 [20] Busireddy C,Rao D N. Application of DLVO theory to character￾ize spreading in crude oil-brine-rock systems / / SPE /DOE Sym- · 927 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有