正在加载图片...
李然等:催化材料服役行为的同步辐射原位X射线研究 731· [22]Xiao Z H,Huang Y C,Dong C L,et al.Operando identification of [39]Fadley C S.X-ray photoelectron spectroscopy and diffraction in the dynamic behavior of oxygen vacancy-rich Co:O for oxygen the hard X-ray regime:Fundamental considerations and future evolution reaction.JAm Chem Soc,2020,142(28):12087 possibilities.Nucl Instrum Methods Phys Res Sect A,2005, [23]Suntivich J,May K J,Gasteiger H A,et al.A perovskite oxide 547(1):24 optimized for oxygen evolution catalysis from molecular orbital [40]Roy K,Artiglia L,van Bokhoven J A.Ambient pressure principles.Science,2011,334(6061):1383 photoelectron spectroscopy:Opportunities in catalysis from solids [24]Hwang J,Rao RR,Giordano L,et al.Perovskites in catalysis and to liquids and introducing time resolution.Chem Cat Chem,2018, electrocatalysis.Science,2017,358(6364):751 10(4):666 [25]May K J,Carlton C E,Stoerzinger K A,et al.Influence of oxygen [41]Stoerzinger K A.Hong W T.Crumlin E J,et al.Insights into evolution during water oxidation on the surface of perovskite oxide electrochemical reactions from ambient pressure photoelectron catalysts.J Phys Chem Lett,2012,3(22):3264 spectroscopy.Acc Chem Res,2015,48(11):2976 [26]Song S Z,Zhou J,Su X Z,et al.Operando X-ray spectroscopic [42]Axnanda S,Crumlin E J,Mao B H,et al.Using "tender"X-ray tracking of self-reconstruction for anchored nanoparticles as high- ambient pressure X-ray photoelectron spectroscopy as A direct performance electrocatalysts towards oxygen evolution.Energy probe of solid-liquid interface.Sci Rep,2015,5:9788 Environ Sci,,2018.11(10):2945 [43]Handoko A D,Wei F X,Jenndy,et al.Understanding [27]Fabbri E,Nachtegaal M,Binninger T,et al.Dynamic surface self- heterogeneous electrocatalytic carbon dioxide reduction through reconstruction is the key of highly active perovskite nano- operando techniques.Nar Catal,2018,1(12):922 electrocatalysts for water splitting.Nat Mater,2017,16(9):925 [44]Favaro M,Valero-Vidal C,Eichhorn J,et al.Elucidating the [28]Kim B J,Fabbri E,Abbott D F,et al.Functional role of Fe-doping alkaline oxygen evolution reaction mechanism on platinum.J in Co-based perovskite oxide catalysts for oxygen evolution Mater Chem A,2017,5(23):11634 reaction.J Am Chem Soc,2019,141(13):5231 [45]Stoerzinger K A,Favaro M,Ross P N,et al.Probing the surface of [29]Tung C W,Hsu YY,Shen Y P,et al.Reversible adapting layer platinum during the hydrogen evolution reaction in alkaline produces robust single-crystal electrocatalyst for oxygen evolution. electrolyte.J Phys Chem B,2018,122(2):864 Nat Commun,2015,6:8106 [46]Saveleva V,Wang L,Teschner D,et al.Operando evidence for a [30]Wang H Y,Hung S F,Hsu Y Y,et al.In situ spectroscopic universal oxygen evolution mechanism on thermal and identification of H-OO bridging on spinel Co,O water oxidation electrochemical iridium oxides.J Phys Chem Lett,2018,9(11): electrocatalyst.J Plrys Chem Let,2016,7(23):4847 3154 [31]Dionigi F.ZengZ H,Sinev I.et al.In-sit structure and catalytic [47]Casalongue S H G.Ng M L.Kaya S,et al.In situ observation of mechanism of NiFe and CoFe layered double hydroxides during surface species on iridium oxide nanoparticles during the oxygen oxygen evolution.Nar Commun,2020,11(1):2522 evolution reaction.Angew Chem In Ed,2014,53(28):7169 [32]Siegbahn H,Siegbahn K.ESCA applied to liquids.J Electron [48]Trotochaud L,Young S L,Ranney J K,et al.Nickel-iron Spectrosc Relat Phenom,1973,2(3):319 oxyhydroxide oxygen-evolution electrocatalysts:The role of [33]Joyner R W,Roberts M W,Yates K.A "high-pressure"electron intentional and incidental iron incorporation.J Am Chem Soc, spectrometer for surface studies.SurfSci,1979,87(2):501 2014,136(18):6744 [34]Ruppender H J,Grunze M,Kong C W,et al.In situ X-ray [49]Gorlin M,de Araujo J F,Schmies H,et al.Tracking catalyst redox photoelectron spectroscopy of surfaces at pressures up to 1 mbar. states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evo- Surf Interface Anal,1990,15(4):245 lution reaction electrocatalysts:The role of catalyst support and [35]Ogletree D F,Bluhm H,Hebenstreit E D,et al.Photoelectron electrolyte pH.JAm Chem Soc,2017,139(5):2070 spectroscopy under ambient pressure and temperature conditions. [50]Ali-Loytty H,Louie M W,Singh M R,et al.Ambient-pressure Nucl Instrum Methods Phys Res Sect A,2009,601(1-2):151 XPS study of a Ni-Fe electrocatalyst for the oxygen evolution [36]Kaya S,Ogasawara H,Naslund LA,et al.Ambient-pressure reaction.JPhys Chem C,2016,120(4):2247 photoelectron spectroscopy for heterogeneous catalysis and [51]Favaro M,Drisdell W S,Marcus M A,et al.An operando electrochemistry.Catal Today,2013,205:101 investigation of(Ni-Fe-Co-Ce)ox system as highly efficient elec- [37]Ogletree DF,Bluhm H,Lebedev G,et al.A differentially pumped trocatalyst for oxygen evolution reaction.ACS Catal,2017,7(2): electrostatic lens system for photoemission studies in the millibar 1248 range.Rev Sci Instrum,2002,73(11):3872 [52]Favaro M,Yang J H,Nappini S,et al.Understanding the oxygen [38]Starr D E,Liu Z,Havecker M,et al.Investigation of solid/vapor evolution reaction mechanism on CoO,using operando ambient- interfaces using ambient pressure X-ray photoelectron pressure X-ray photoelectron spectroscopy.JAm Chem Soc,2017, spectroscopy.Chem Soc Rev,2013,42(13):5833 139(26):8960Xiao Z H, Huang Y C, Dong C L, et al. Operando identification of the  dynamic  behavior  of  oxygen  vacancy-rich  Co3O4 for  oxygen evolution reaction. J Am Chem Soc, 2020, 142(28): 12087 [22] Suntivich  J,  May  K  J,  Gasteiger  H  A,  et  al.  A  perovskite  oxide optimized  for  oxygen  evolution  catalysis  from  molecular  orbital principles. Science, 2011, 334(6061): 1383 [23] Hwang J, Rao R R, Giordano L, et al. Perovskites in catalysis and electrocatalysis. Science, 2017, 358(6364): 751 [24] May K J, Carlton C E, Stoerzinger K A, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett, 2012, 3(22): 3264 [25] Song  S  Z,  Zhou  J,  Su  X  Z,  et  al.  Operando  X-ray  spectroscopic tracking of self-reconstruction for anchored nanoparticles as high￾performance  electrocatalysts  towards  oxygen  evolution. Energy Environ Sci, 2018, 11(10): 2945 [26] Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self￾reconstruction  is  the  key  of  highly  active  perovskite  nano￾electrocatalysts for water splitting. Nat Mater, 2017, 16(9): 925 [27] Kim B J, Fabbri E, Abbott D F, et al. Functional role of Fe-doping in  Co-based  perovskite  oxide  catalysts  for  oxygen  evolution reaction. J Am Chem Soc, 2019, 141(13): 5231 [28] Tung C W, Hsu Y Y, Shen Y P, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat Commun, 2015, 6: 8106 [29] Wang  H  Y,  Hung  S  F,  Hsu  Y  Y,  et  al. In situ spectroscopic identification  of  μ-OO  bridging  on  spinel  Co3O4 water  oxidation electrocatalyst. J Phys Chem Lett, 2016, 7(23): 4847 [30] Dionigi F, Zeng Z H, Sinev I, et al. In-situ structure and catalytic mechanism  of  NiFe  and  CoFe  layered  double  hydroxides  during oxygen evolution. Nat Commun, 2020, 11(1): 2522 [31] Siegbahn  H,  Siegbahn  K.  ESCA  applied  to  liquids. J Electron Spectrosc Relat Phenom, 1973, 2(3): 319 [32] Joyner R W, Roberts M W, Yates K. A “high-pressure” electron spectrometer for surface studies. Surf Sci, 1979, 87(2): 501 [33] Ruppender  H  J,  Grunze  M,  Kong  C  W,  et  al. In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf Interface Anal, 1990, 15(4): 245 [34] Ogletree  D  F,  Bluhm  H,  Hebenstreit  E  D,  et  al.  Photoelectron spectroscopy  under  ambient  pressure  and  temperature  conditions. Nucl Instrum Methods Phys Res Sect A, 2009, 601(1-2): 151 [35] Kaya  S,  Ogasawara  H,  Näslund  L  Å,  et  al.  Ambient-pressure photoelectron  spectroscopy  for  heterogeneous  catalysis  and electrochemistry. Catal Today, 2013, 205: 101 [36] Ogletree D F, Bluhm H, Lebedev G, et al. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum, 2002, 73(11): 3872 [37] Starr D E, Liu Z, Hävecker M, et al. Investigation of solid/vapor interfaces  using  ambient  pressure  X-ray  photoelectron spectroscopy. Chem Soc Rev, 2013, 42(13): 5833 [38] Fadley  C  S.  X-ray  photoelectron  spectroscopy  and  diffraction  in the  hard  X-ray  regime:  Fundamental  considerations  and  future possibilities. Nucl Instrum Methods Phys Res Sect A,  2005, 547(1): 24 [39] Roy  K,  Artiglia  L,  van  Bokhoven  J  A.  Ambient  pressure photoelectron spectroscopy: Opportunities in catalysis from solids to liquids and introducing time resolution. Chem Cat Chem, 2018, 10(4): 666 [40] Stoerzinger  K  A,  Hong  W  T,  Crumlin  E  J,  et  al.  Insights  into electrochemical  reactions  from  ambient  pressure  photoelectron spectroscopy. Acc Chem Res, 2015, 48(11): 2976 [41] Axnanda S, Crumlin E J, Mao B H, et al. Using “tender” X-ray ambient  pressure  X-ray  photoelectron  spectroscopy  as  A  direct probe of solid-liquid interface. Sci Rep, 2015, 5: 9788 [42] Handoko  A  D,  Wei  F  X,  Jenndy,  et  al.  Understanding heterogeneous  electrocatalytic  carbon  dioxide  reduction  through operando techniques. Nat Catal, 2018, 1(12): 922 [43] Favaro  M,  Valero-Vidal  C,  Eichhorn  J,  et  al.  Elucidating  the alkaline  oxygen  evolution  reaction  mechanism  on  platinum. J Mater Chem A, 2017, 5(23): 11634 [44] Stoerzinger K A, Favaro M, Ross P N, et al. Probing the surface of platinum  during  the  hydrogen  evolution  reaction  in  alkaline electrolyte. J Phys Chem B, 2018, 122(2): 864 [45] Saveleva V, Wang L, Teschner D, et al. Operando evidence for a universal  oxygen  evolution  mechanism  on  thermal  and electrochemical  iridium  oxides. J Phys Chem Lett,  2018,  9(11): 3154 [46] Casalongue S H G, Ng M L, Kaya S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed, 2014, 53(28): 7169 [47] Trotochaud  L,  Young  S  L,  Ranney  J  K,  et  al.  Nickel-iron oxyhydroxide  oxygen-evolution  electrocatalysts:  The  role  of intentional  and  incidental  iron  incorporation. J Am Chem Soc, 2014, 136(18): 6744 [48] Görlin M, de Araújo J F, Schmies H, et al. Tracking catalyst redox states and reaction dynamics in Ni‒Fe oxyhydroxide oxygen evo￾lution  reaction  electrocatalysts:  The  role  of  catalyst  support  and electrolyte pH. J Am Chem Soc, 2017, 139(5): 2070 [49] Ali-Löytty  H,  Louie  M  W,  Singh  M  R,  et  al.  Ambient-pressure XPS  study  of  a  Ni ‒Fe  electrocatalyst  for  the  oxygen  evolution reaction. J Phys Chem C, 2016, 120(4): 2247 [50] Favaro  M,  Drisdell  W  S,  Marcus  M  A,  et  al.  An  operando investigation of (Ni‒Fe‒Co‒Ce)ox system as highly efficient elec￾trocatalyst for oxygen evolution reaction. ACS Catal, 2017, 7(2): 1248 [51] Favaro M, Yang J H, Nappini S, et al. Understanding the oxygen evolution  reaction  mechanism  on  CoOx using  operando  ambient￾pressure X-ray photoelectron spectroscopy. J Am Chem Soc, 2017, 139(26): 8960 [52] 李    然等: 催化材料服役行为的同步辐射原位 X 射线研究 · 731 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有