正在加载图片...
杨竞等:耦合孪生晶体塑性模型硬化参数的灵敏度分析 ·1083· 是详细给出了硬化参数确定步骤,即先根据屈服极限 hardening behavior in V-5Cr-5Ti alloy.Chin J Appl Mech, 确定初始滑移阻力s:,再根据应变硬化率拐点和阶段 2012,44(2):334 A分别确定8和孪生硬化指数b,最后对整个应变硬化 (余勇,潘晓霞,谢若泽,等.孪生诱发塑性对V5C5Ti合 率曲线微调确定饱和参数S 金应变硬化行为的影响.力学学报,2012,44(2):334) 01] Li H W,Yang H,Sun Z C.A robust integration algorithm for (2)初始滑移阻力s8与屈服极限呈线性关系。孪 implementing rate dependent crystal plasticity into explicit finite 生硬化指数b增大使得孪生硬化阶段A减弱.孪生阻 element method.Int J Plast,2008,24(2)267 力与滑移阻力比值8增大,孪生增长率降低,且硬化率 [12]Zheng H L,Yang H,Li H W.Crystal plasticity finite element 拐点后移,直至8=1.2时拐点消失 modeling for uniaxial compression of commercially pure titanium. (3)获得了Fe-22Mn0.6C型孪生诱导塑性钢耦 JPlast Eng,2013,20(1):95 (郑华雷,杨合,李宏伟.纯钛压缩变形下的品体塑性有限 合孪生晶体塑性模型硬化参数的取值范围,其中s。为 元分析.塑性工程学报,2013,20(1):95) 80~160MPa之间,b为0~3之间,8为1~1.3之间. 03] Bouaziz O,Allain S,Scott C P,et al.High manganese austenit- ic twinning induced plasticity steels:a review of the microstruc- 参考文献 ture properties relationships.Curr Opin Solid State Mater Sci, 2011,15(4):141 1]Zhang K S,Zhang G.Feng L Stress calculation of single crystal [14]Sarma G,Zacharia T.Integration algorithm for modeling the elastoviscoplastic response of polycrystalline materials.J Mech under finite slip plastic deformation.Acta Mech Sin,2002,34 (4):636 Phys Solid,1999,47(6):1219 [15]Wang W H.Study on Plastie Deformation Beharior Induced by (张克实,张光,冯露.单品体塑性滑移有限变形下的应力计 算.力学学报,2002,34(4):636) Slipping and Ticinning for TWIP Steel [Dissertation].Beijing: Li D Y,Zhang S R.Peng Y H,et al.Finite element simulation University of Science and Technology Beijing,2012 (王伟华.TWP钢滑移和孪生耦合的塑性变形行为[学位论 of sheet metal stamping with polycrystalline plasticity.Chin 文].北京:北京科技大学,2012) Mech Eng,2008,44(1):190 06 (李大永,张少蓉,彭颖红,等.板材冲压成形的品体塑性有 Gebhardt T,Music D,Kossmann D,et al.Elastic properties of 限元模拟.机械工程学报,2008,44(1):190) fce Fe-Mn-X (X=Al,Si)alloys studied by theory and experi- B3]Pi H C.Han JT,Zhang C G,et al.Simulation of the rolling tex- ment.Acta Mater,2011,59(8):3145 ture of pure Al using crystal plasticity finite element method.J [17]Sun C Y,Guo X R,Huang J,et al.Modelling of plastic deform- Univ Sci Technol Beijing,2007,29(9):920 ation on coupling twinning of single crystal TWIP steel.Acta Met- (皮华春,韩静涛,章传国,等.面心纯铝轧制织构的晶体塑 all Sin,2015,51(3):357 性有限元模拟.北京科技大学学报,2007,29(9):920) (孙朝阳,郭样如,黄杰,等.耦合李生的TWP钢单品品体 4]Kalidindi S R.Modeling anisotropic strain hardening and deforma- 塑性变形行为模拟研究.金属学报,2015,51(3):357) tion textures in low stacking fault energy fec metals.Int Plast, [18]Renard K,Jacques P J.On the relationship between work hard- 2001,17(6):837 ening and twinning rate in TWIP steels.Mater Sci Eng A,2012, [5]Barbier D.Favier V,Bolle B.Modeling the deformation textures 542:8 [19]Bouaziz O,Allain S,Scott C.Effect of grain and twin bounda- and microstructural evolutions of a Fe-Mn-C TWIP steel during ries on the hardening mechanisms of twinning-induced plasticity tensile and shear testing.Mater Sci Eng A,2012,540:212 [6]Dancette S,Delannay L,Renard K,et al.Crystal plasticity mod- steels.Scripta Mater,2008,58(6):484 [20] eling of texture development and hardening in TWIP steels.Acta Sun C Y,Huang J,Guo N,et al.A physical constitutive model Matr,2012,60(5):2135 for Fe-22Mn-0.6C TWIP steel based on dislocation density.Ac- [Wang N,Lei L P,Fang G,et al.Deformation analysis of magne- ta Metall Sin,2014,50(9)1115 sium alloy based on crystal plasticity theory.Chin Rare Met, (孙朝阳,黄杰,郭宁,等.基于位错密度的Fe一22Mn0.6C型 2008,32(6):766 TWP钢物理本构模型研究.金属学报,2014,50(9):1115) (王娜,雷丽萍,方刚,等.镁合金变形的晶体塑性有限元分 221]Barbier D,Gey N,Allain S,et al.Analysis of the tensile behav- 析.稀有金属,2008,32(6):766) ior of a TWIP steel based on the texture and microstructure evolu- [8]Salem AA,Kalidindi S R,Semiatin S L.Strain hardening due to tions.Mater Sci Eng A,2009,500(1-2)196 deformation twinning in a-titanium:constitutive relations and crys- [22] Grassel O,Kriiger L,Frommeyer G,et al.High strength Fe- tal-plasticity modeling.Acta Mater,2005,53(12):3495 Mn-(Al,Si)TRIP/TWIP steels development-properties-appli- 9]Wu X P,Kalidindi S R,Necker C,et al.Prediction of crystallo- cation.1 nt J Plast,2000,16(10-l1):1391 graphic texture evolution and anisotropic stress-strain curves during 23]Koyama M,SawaguchiT,Lee T,et al.Work hardening associ- large plastic strains in high purity aitanium using a Taylor-type ated with s-martensitic transformation,deformation twinning crystal plasticity model.Acta Mater,2007,55(2):423 and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn- [10]Yu Y,Pan XX,Xie RZ,et al.Study on TWIP effect on strain 0.8C TWIP steels.Mater Sci Eng A,2011,528(24)7310杨 竞等: 耦合孪生晶体塑性模型硬化参数的灵敏度分析 是详细给出了硬化参数确定步骤,即先根据屈服极限 确定初始滑移阻力 s α 0,再根据应变硬化率拐点和阶段 A 分别确定 δ 和孪生硬化指数 b,最后对整个应变硬化 率曲线微调确定饱和参数 Spr . ( 2) 初始滑移阻力 s α 0 与屈服极限呈线性关系. 孪 生硬化指数 b 增大使得孪生硬化阶段 A 减弱. 孪生阻 力与滑移阻力比值 δ 增大,孪生增长率降低,且硬化率 拐点后移,直至 δ = 1. 2 时拐点消失. ( 3) 获得了 Fe--22Mn--0. 6C 型孪生诱导塑性钢耦 合孪生晶体塑性模型硬化参数的取值范围,其中 s α 0 为 80 ~ 160 MPa 之间,b 为 0 ~ 3 之间,δ 为 1 ~ 1. 3 之间. 参 考 文 献 [1] Zhang K S,Zhang G,Feng L. Stress calculation of single crystal under finite slip plastic deformation. Acta Mech Sin,2002,34 ( 4) : 636 ( 张克实,张光,冯露. 单晶体塑性滑移有限变形下的应力计 算. 力学学报,2002,34( 4) : 636) [2] Li D Y,Zhang S R,Peng Y H,et al. Finite element simulation of sheet metal stamping with polycrystalline plasticity. Chin J Mech Eng,2008,44( 1) : 190 ( 李大永,张少睿,彭颖红,等. 板材冲压成形的晶体塑性有 限元模拟. 机械工程学报,2008,44( 1) : 190) [3] Pi H C,Han J T,Zhang C G,et al. Simulation of the rolling tex￾ture of pure Al using crystal plasticity finite element method. J Univ Sci Technol Beijing,2007,29( 9) : 920 ( 皮华春,韩静涛,章传国,等. 面心纯铝轧制织构的晶体塑 性有限元模拟. 北京科技大学学报,2007,29( 9) : 920) [4] Kalidindi S R. Modeling anisotropic strain hardening and deforma￾tion textures in low stacking fault energy fcc metals. Int J Plast, 2001,17( 6) : 837 [5] Barbier D,Favier V,Bolle B. Modeling the deformation textures and microstructural evolutions of a Fe--Mn--C TWIP steel during tensile and shear testing. Mater Sci Eng A,2012,540: 212 [6] Dancette S,Delannay L,Renard K,et al. Crystal plasticity mod￾eling of texture development and hardening in TWIP steels. Acta Mater,2012,60( 5) : 2135 [7] Wang N,Lei L P,Fang G,et al. Deformation analysis of magne￾sium alloy based on crystal plasticity theory. Chin J Rare Met, 2008,32( 6) : 766 ( 王娜,雷丽萍,方刚,等. 镁合金变形的晶体塑性有限元分 析. 稀有金属,2008,32( 6) : 766) [8] Salem A A,Kalidindi S R,Semiatin S L. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crys￾tal-plasticity modeling. Acta Mater,2005,53( 12) : 3495 [9] Wu X P,Kalidindi S R,Necker C,et al. Prediction of crystallo￾graphic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model. Acta Mater,2007,55( 2) : 423 [10] Yu Y,Pan X X,Xie R Z,et al. Study on TWIP effect on strain hardening behavior in V--5Cr--5Ti alloy. Chin J Appl Mech, 2012,44( 2) : 334 ( 余勇,潘晓霞,谢若泽,等. 孪生诱发塑性对 V--5Cr--5Ti 合 金应变硬化行为的影响. 力学学报,2012,44( 2) : 334) [11] Li H W,Yang H,Sun Z C. A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method. Int J Plast,2008,24( 2) : 267 [12] Zheng H L,Yang H,Li H W. Crystal plasticity finite element modeling for uniaxial compression of commercially pure titanium. J Plast Eng,2013,20( 1) : 95 ( 郑华雷,杨合,李宏伟. 纯钛压缩变形下的晶体塑性有限 元分析. 塑性工程学报,2013,20( 1) : 95) [13] Bouaziz O,Allain S,Scott C P,et al. High manganese austenit￾ic twinning induced plasticity steels: a review of the microstruc￾ture properties relationships. Curr Opin Solid State Mater Sci, 2011,15( 4) : 141 [14] Sarma G,Zacharia T. Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials. J Mech Phys Solids,1999,47( 6) : 1219 [15] Wang W H. Study on Plastic Deformation Behavior Induced by Slipping and Twinning for TWIP Steel [Dissertation]. Beijing: University of Science and Technology Beijing,2012 ( 王伟华. TWIP 钢滑移和孪生耦合的塑性变形行为[学位论 文]. 北京: 北京科技大学,2012) [16] Gebhardt T,Music D,Kossmann D,et al. Elastic properties of fcc Fe--Mn--X ( X = Al,Si) alloys studied by theory and experi￾ment. Acta Mater,2011,59( 8) : 3145 [17] Sun C Y,Guo X R,Huang J,et al. Modelling of plastic deform￾ation on coupling twinning of single crystal TWIP steel. Acta Met￾all Sin,2015,51( 3) : 357 ( 孙朝阳,郭祥如,黄杰,等. 耦合孪生的 TWIP 钢单晶晶体 塑性变形行为模拟研究. 金属学报,2015,51( 3) : 357) [18] Renard K,Jacques P J. On the relationship between work hard￾ening and twinning rate in TWIP steels. Mater Sci Eng A,2012, 542: 8 [19] Bouaziz O,Allain S,Scott C. Effect of grain and twin bounda￾ries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater,2008,58( 6) : 484 [20] Sun C Y,Huang J,Guo N,et al. A physical constitutive model for Fe--22Mn--0. 6C TWIP steel based on dislocation density. Ac￾ta Metall Sin,2014,50( 9) : 1115 ( 孙朝阳,黄杰,郭宁,等. 基于位错密度的 Fe--22Mn--0. 6C 型 TWIP 钢物理本构模型研究. 金属学报,2014,50( 9) : 1115) [21] Barbier D,Gey N,Allain S,et al. Analysis of the tensile behav￾ior of a TWIP steel based on the texture and microstructure evolu￾tions. Mater Sci Eng A,2009,500( 1 - 2) : 196 [22] Grssel O,Krüger L,Frommeyer G,et al. High strength Fe-- Mn--( Al,Si) TRIP /TWIP steels development--properties--appli￾cation. Int J Plast,2000,16( 10--11) : 1391 [23] Koyama M,Sawaguchi T,Lee T,et al. Work hardening associ￾ated with ε - martensitic transformation,deformation twinning and dynamic strain aging in Fe--17Mn--0. 6C and Fe--17Mn-- 0. 8C TWIP steels. Mater Sci Eng A,2011,528( 24) : 7310 · 3801 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有