正在加载图片...
·1018 工程科学学报,第43卷,第8期 reversible local environment improves oxygen stability at the Mater Interfaces,2020,12(9):10240 electrochemical interfaces of nickel-rich cathode materials.A4CS [21]Huang B H,Liu D Q,Zhang L H,et al.An efficient synthetic Appl Mater Interfaces,2019,11(41):37885 method to prepare high-performance Ni-rich LiNio.sCoo.Mno.1O2 [16]Jiao L F,Zhang M,Yuan H T,et al.Effect of Cr doping on the for lithium-ion batteries.ACS Appl Energy Mater,2019,2(10): structural,electrochemical properties of LiLiNM 7403 Cr]Oz(x=0,0.02.0.04,0.06.0.08)as cathode materials for [22]Nie Y,Xiao W,Miao C,et al.Boosting the electrochemical lithium secondary batteries.Power Sources,2007,167(1):178 performance of LiNioCoAlosO cathode materials in situ [17]Ryu HH,Park N Y,Yoon D R,et al.New class of Ni-rich cathode modified with LiAlo.Ti(PO)fast ion conductor for lithium- materials Li[Ni,Co,BO2 for next lithium batteries.dv ion batteries.Electrochimica Acta,2020,353:136477 Energy Mater,2020,10(25):2000495 [23]Yao L,Li Y P,Gao X P,et al.Microstructure boosting the cycling [18]Mesnier A,Manthiram A.Synthesis of LiNiOz at moderate oxygen stability of LiNio.6Coo.2Mno.202 cathode through Zr-based dual pressure and long-term cyclability in lithium-ion full cells.ACS modification.Energy Storage Mater,2021,36:179 Appl Mater Interfaces,2020,12(47):52826 [24]Keefe A S,Weber R,Hill I G,et al.Studies of the SEI layers in [19]Pan L C,Xia Y G,Qiu B,et al.Structure and electrochemistry of Li(Nio.sMnoCoo.2)O/artificial graphite cells after formation and B doped Li(Lio2Nio.13Co0.13Mno.54)1-B,O2 as cathode materials after cycling.J Electrochem Soc,2020,167(12):120507 for lithium-ion batteries.Power Sources,2016,327:273 [25]Keefe A S,Buteau S,Hill I G,et al.Temperature dependent EIS [20]Yang W,Xiang W.Chen Y X,et al.Interfacial regulation of Ni- studies separating charge transfer impedance from contact rich cathode materials with an ion-conductive and pillaring layer impedance in lithium-ion symmetric cells.J Electrochem Soc, by infusing gradient boron for improved cycle stability.ACS App 2019,166(14):A3272reversible  local  environment  improves  oxygen  stability  at  the electrochemical  interfaces  of  nickel-rich  cathode  materials. ACS Appl Mater Interfaces, 2019, 11(41): 37885 Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural,  electrochemical  properties  of  Li[Li0.2Ni0.2−x/2Mn0.6−x/2 Crx ]O2 (x =  0,  0.02,  0.04,  0.06,  0.08)  as  cathode  materials  for lithium secondary batteries. J Power Sources, 2007, 167(1): 178 [16] Ryu H H, Park N Y, Yoon D R, et al. New class of Ni-rich cathode materials  Li[NixCoyB1–x–y ]O2 for  next  lithium  batteries. Adv Energy Mater, 2020, 10(25): 2000495 [17] Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure  and  long-term  cyclability  in  lithium-ion  full  cells. ACS Appl Mater Interfaces, 2020, 12(47): 52826 [18] Pan L C, Xia Y G, Qiu B, et al. Structure and electrochemistry of B  doped  Li(Li0.2Ni0.13Co0.13Mn0.54)1–xBxO2 as  cathode  materials for lithium-ion batteries. J Power Sources, 2016, 327: 273 [19] Yang W, Xiang W, Chen Y X, et al. Interfacial regulation of Ni￾rich  cathode  materials  with  an  ion-conductive  and  pillaring  layer by infusing gradient boron for improved cycle stability. ACS Appl [20] Mater Interfaces, 2020, 12(9): 10240 Huang  B  H,  Liu  D  Q,  Zhang  L  H,  et  al.  An  efficient  synthetic method  to  prepare  high-performance  Ni-rich  LiNi0.8Co0.1Mn0.1O2 for  lithium-ion  batteries. ACS Appl Energy Mater,  2019,  2(10): 7403 [21] Nie  Y,  Xiao  W,  Miao  C,  et  al.  Boosting  the  electrochemical performance  of  LiNi0.8Co0.15Al0.05O2 cathode  materials  in  situ modified with Li1.3Al0.3Ti1.7(PO4 )3 fast ion conductor for lithium￾ion batteries. Electrochimica Acta, 2020, 353: 136477 [22] Yao L, Li Y P, Gao X P, et al. Microstructure boosting the cycling stability  of  LiNi0.6Co0.2Mn0.2O2 cathode  through  Zr-based  dual modification. Energy Storage Mater, 2021, 36: 179 [23] Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2 /artificial  graphite  cells  after  formation  and after cycling. J Electrochem Soc, 2020, 167(12): 120507 [24] Keefe A S, Buteau S, Hill I G, et al. Temperature dependent EIS studies  separating  charge  transfer  impedance  from  contact impedance  in  lithium-ion  symmetric  cells. J Electrochem Soc, 2019, 166(14): A3272 [25] · 1018 · 工程科学学报,第 43 卷,第 8 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有