正在加载图片...
·1432· 工程科学学报,第40卷,第12期 1998,53(4):225 2011.100(1-2):14 [14]Sutherland K L.Physical chemistry of flotation;kinetics of the [34]Yin WZ,Wang JZ.Effects of particle size and particle interac- flotation process.J Phys Chem,1948,52(2):394 tions on scheelite flotation.Trans Nonferrous Met Soc China, [15]Yoon R H,Mao L Q.Application of extended DLVO theory,IV: 2014.24(11):3682 derivation of flotation rate equation from first principles.Colloid [35]Hetzel F,Doner H E.Some colloidal properties of beidellite: Interface Sci,1996,181(2):613 comparison with low and high charge montmorillonites.Clays [16]Miettinen T,Ralston J,Forasiero D.The limits of fine particle Clay Miner,1993.41(3):453 flotation.Miner Eng,2010,23(5):420 [36]Lagaly G,Ziesmer S.Colloid chemistry of clay minerals:the co- [17]Dobby G S,Finch J A.Particle size dependence in flotation de- agulation of montmorillonite dispersions.Adr Colloid Interface rived from a fundamental model of the capture process.IntMin- Sci,2003,100-102:105 er Process,1987,21(34):241 [37]Chheda P,Grasso D,Van Oss C J.Impact of ocone on stability [18]Yoon R H,Luttrell G H.The effect of bubble size on fine parti- of montmorillonite suspensions.Colloid Interface Sci,1992, cle flotation.Miner Process Extr Metall Rev,1989,5(14):101 153(1):226 [19]Yoon R H.The role of hydrodynamic and surface forces in bub- [38]Sharma P K,Rao K H.Adhesion of Paenibacillus polymyxa on ble-particle interaction.Int J Miner Process,2000.58(14): chalcopyrite and pyrite:surface thermodynamics and extended 129 DLVO theory.Colloids Surf B,2003,29(1):21 [20]Dobby GS,Finch J A.A model of particle sliding time for flota- [39]Gao Y,Evans G M,Wanless E J,et al.DEM simulation of sin- tion size bubbles.J Colloid Interface Sci,1986,109(2):493 gle bubble flotation:implications for the hydrophobic force in [21]Jowett A.Formation and disruption of particle-bubble aggregates particle-bubble interactions.Ady Pouder Technol,2014,25(4): in flotation.//Symposium on Fine Particles Processing.Las Ve- 1177 g5,1980:720 [40]Amirfazli A,Neumann A W.Status of the three-phase line ten- [22]Dai Z F,Fornasiero D,Ralston J.Particle-bubble attachment in sion:a review.Adv Colloid Interface Sci,2004,110(3):121 mineral flotation.J Colloid Interface Sci,1999,217(1):70 [41]Chau T T,Bruckard W J,Koh P T L,et al.A review of factors [23]Yoon R H,Yordan J L.Induction time measurements for the that affect contact angle and implications for flotation practice. quartz-amine flotation system.J Colloid Interface Sci,1991,141 Adr Colloid Interface Sci,2009,150(2):106 (2):374 [42]Feng D X,Nguyen A V,Tong X.Effect of contact angle and [24]Scheludko A,Toshev B V,Bojadjiev D T.Attachment of parti- contact angle hysteresis on the floatability of spheres at the air-wa- cles to a liquid surface capillary theory of flotation).I Chem ter interface.Ade Colloid Interface Sci,2017,248:69 Soc Faraday Trans 1,1976,72(4):2815 [43]Cheng T W,Holtham P N.The particle detachment process in [25]Derjaguin B.Landau L.Theory of the stability of strongly flotation.Miner Eng,1995,8(8):883 charged lyophobic sols and of the adhesion of strongly charged [44]Gu G X,Xu Z H,Nandakumar K,et al.Effects of physical en- particles in solutions of electrolytes.Prog Surf Sci,1993,43(1- vironment on induction time of air-bitumen attachment.Int J 4):30 Miner Process,2003,69(14):235 [26]Verwey E J W.Theory of the stability of lyophobie colloids.J [45]Somasundaran P,Zhang L,Fuerstenau D W.The effect of envi- P%ys Chem,1947,51(3):631 ronment,oxidation and dissolved metal species on the chemistry [27]Nguyen A,Schulze HJ.Colloidal Science of Flotation.Boca Ra- of coal flotation.Int J Miner Process,2000,58(14):85 ton:CRC Press,2003 [46]Albijanic B,Bradshaw D J,Nguyen A V.The relationships be- [28]Bostrom M,Williams D R M,Ninham B W.Specific ion effects: tween the bubble-particle attachment time,collector dosage and why DLVO theory fails for biology and colloid systems.Phys Rer the mineralogy of a copper sulfide ore.Miner Eng,2012,36-38: Let,2001,87(16):168103-1 309 [29]Christenson H K,Claesson P M.Direet measurements of the [47]Krasowska M,Malysa K.Wetting films in attachment of the colli- force between hydrophobic surfaces in water.Ade Colloid Inter- ding bubble.Ade Colloid Interface Sci,2007,134-135:138 face Sci,2001,91(3):391 [48]Anfruns JF.Rate of capture of small particles in flotation.Trans [30]Attard P.Long-range attraction between hydrophobic surfaces. Inst Min Metall Sect C.1977,86:9 Phys Chem,1989,93(17):6441 [49]Blake P,Ralston J.Controlled methylation of quartz particles. [31]Yoon R H,Aksoy B S.Hydrophobic forces in thin water films Colloids Surf,1985,15:101 stabilized by dodecylammonium chloride.J Colloid Interface Sci, [50]Vieira A M,Peres A E C.The effect of amine type,pH,and 1999,211(1):1 size range in the flotation of quartz.Miner Eng,2007,20(10): [32]Grasso D,Subramaniam K,Butkus M,et al.A review of non- 1008 DLVO interactions in environmental colloidal systems.Rev Enri- [51]Verrelli D I,Koh PTL,Bruckard W J,et al.Variations in the ron Sci Biotechnol,2002,1(1):17 induction period for particle-bubble attachment.Miner Eng, [33]Pineres J.Barraza J.Energy barrier of aggregates coal particle- 2012,36-38:219 bubble through the extended DLVO theory.Int J Miner Process, [52]Verrelli DI,Bruckard W J,Koh P T L,et al.Particle shape工程科学学报,第 40 卷,第 12 期 1998, 53(4): 225 [14] Sutherland K L. Physical chemistry of flotation; kinetics of the flotation process. J Phys Chem, 1948, 52(2): 394 [15] Yoon R H, Mao L Q. Application of extended DLVO theory, IV: derivation of flotation rate equation from first principles. J Colloid Interface Sci, 1996, 181(2): 613 [16] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 [17] Dobby G S, Finch J A. Particle size dependence in flotation de鄄 rived from a fundamental model of the capture process. Int J Min鄄 er Process, 1987, 21(3鄄4): 241 [18] Yoon R H, Luttrell G H. The effect of bubble size on fine parti鄄 cle flotation. Miner Process Extr Metall Rev, 1989, 5(1鄄4): 101 [19] Yoon R H. The role of hydrodynamic and surface forces in bub鄄 ble鄄particle interaction. Int J Miner Process, 2000, 58 ( 1鄄4 ): 129 [20] Dobby G S, Finch J A. A model of particle sliding time for flota鄄 tion size bubbles. J Colloid Interface Sci, 1986, 109(2): 493 [21] Jowett A. Formation and disruption of particle鄄bubble aggregates in flotation. / / Symposium on Fine Particles Processing. Las Ve鄄 gas, 1980: 720 [22] Dai Z F, Fornasiero D, Ralston J. Particle鄄bubble attachment in mineral flotation. J Colloid Interface Sci, 1999, 217(1): 70 [23] Yoon R H, Yordan J L. Induction time measurements for the quartz鄄amine flotation system. J Colloid Interface Sci, 1991, 141 (2): 374 [24] Scheludko A, Toshev B V, Bojadjiev D T. Attachment of parti鄄 cles to a liquid surface ( capillary theory of flotation). J Chem Soc Faraday Trans 1, 1976, 72(4): 2815 [25] Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci, 1993, 43(1鄄 4): 30 [26] Verwey E J W. Theory of the stability of lyophobic colloids. J Phys Chem, 1947, 51(3): 631 [27] Nguyen A, Schulze H J. Colloidal Science of Flotation. Boca Ra鄄 ton: CRC Press, 2003 [28] Bostr觟m M, Williams D R M, Ninham B W. Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett, 2001, 87(16): 168103鄄1 [29] Christenson H K, Claesson P M. Direct measurements of the force between hydrophobic surfaces in water. Adv Colloid Inter鄄 face Sci, 2001, 91(3): 391 [30] Attard P. Long鄄range attraction between hydrophobic surfaces. J Phys Chem, 1989, 93(17): 6441 [31] Yoon R H, Aksoy B S. Hydrophobic forces in thin water films stabilized by dodecylammonium chloride. J Colloid Interface Sci, 1999, 211(1): 1 [32] Grasso D, Subramaniam K, Butkus M, et al. A review of non鄄 DLVO interactions in environmental colloidal systems. Rev Envi鄄 ron Sci Biotechnol, 2002, 1(1): 17 [33] Pi觡eres J, Barraza J. Energy barrier of aggregates coal particle鄄 bubble through the extended DLVO theory. Int J Miner Process, 2011, 100(1鄄2): 14 [34] Yin W Z, Wang J Z. Effects of particle size and particle interac鄄 tions on scheelite flotation. Trans Nonferrous Met Soc China, 2014, 24(11): 3682 [35] Hetzel F, Doner H E. Some colloidal properties of beidellite: comparison with low and high charge montmorillonites. Clays Clay Miner, 1993, 41(3): 453 [36] Lagaly G, Ziesmer S. Colloid chemistry of clay minerals: the co鄄 agulation of montmorillonite dispersions. Adv Colloid Interface Sci, 2003, 100鄄102: 105 [37] Chheda P, Grasso D, Van Oss C J. Impact of ozone on stability of montmorillonite suspensions. J Colloid Interface Sci, 1992, 153(1): 226 [38] Sharma P K, Rao K H. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloids Surf B, 2003, 29(1): 21 [39] Gao Y, Evans G M, Wanless E J, et al. DEM simulation of sin鄄 gle bubble flotation: implications for the hydrophobic force in particle鄄bubble interactions. Adv Powder Technol, 2014, 25(4): 1177 [40] Amirfazli A, Neumann A W. Status of the three鄄phase line ten鄄 sion: a review. Adv Colloid Interface Sci, 2004, 110(3): 121 [41] Chau T T, Bruckard W J, Koh P T L, et al. A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 2009, 150(2): 106 [42] Feng D X, Nguyen A V, Tong X. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air鄄wa鄄 ter interface. Adv Colloid Interface Sci, 2017, 248: 69 [43] Cheng T W, Holtham P N. The particle detachment process in flotation. Miner Eng, 1995, 8(8): 883 [44] Gu G X, Xu Z H, Nandakumar K, et al. Effects of physical en鄄 vironment on induction time of air鄄bitumen attachment. Int J Miner Process, 2003, 69(1鄄4): 235 [45] Somasundaran P, Zhang L, Fuerstenau D W. The effect of envi鄄 ronment, oxidation and dissolved metal species on the chemistry of coal flotation. Int J Miner Process, 2000, 58(1鄄4): 85 [46] Albijanic B, Bradshaw D J, Nguyen A V. The relationships be鄄 tween the bubble鄄particle attachment time, collector dosage and the mineralogy of a copper sulfide ore. Miner Eng, 2012, 36鄄38: 309 [47] Krasowska M, Malysa K. Wetting films in attachment of the colli鄄 ding bubble. Adv Colloid Interface Sci, 2007, 134鄄135: 138 [48] Anfruns J F. Rate of capture of small particles in flotation. Trans Inst Min Metall Sect C, 1977, 86: 9 [49] Blake P, Ralston J. Controlled methylation of quartz particles. Colloids Surf, 1985, 15: 101 [50] Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 [51] Verrelli D I, Koh P T L, Bruckard W J, et al. Variations in the induction period for particle鄄bubble attachment. Miner Eng, 2012, 36鄄38: 219 [52] Verrelli D I, Bruckard W J, Koh P T L, et al. Particle shape ·1432·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有