NAN DA XUE JING PIN KE CHENG 充分性,若y=f(x)在x可导.则im=f"(x) 0△x 故N=f(x)+a其中a→0(当Ax→0时) 或Ay=∫"(x)△x+a·Ax2 My.N=1ma=0即a·△x=0(△x) 由于lim △x→>0 故y=f(x)在x可微.且dy=f(xo)Ax 定理1告诉我们,对于一元函数yf(x)而言, 可微与可导是等价的 OD 高等數粤lim '( ). 0 0 f x x y x = → 充分性,若y=f (x)在x0可导. 则 故 '( ) , 0 ( 0 ). = 0 + 其中 → 当 → 时 f x x x y '( ) , 0 或 y = f x x + x 由于 lim lim 0. ( ). 0 0 x o x x x x x = = = → → 即 故y=f (x)在 x0可微. 且dy=f '(x0 )x. 定理1告诉我们,对于一元函数y=f (x)而言, 可微与可导是等价的