Regular patch Limit triangle isF=(b,bb),and its linear parameterization is F(v,w)=ub+vb+wbis,(v,w)ES (4,v,w):barycentric system of coordinates for the unit triangle,u=1-v-w By the linear precision property of the Bernstein polynomials,F(v,w)can be expressed into the quartic Bezier form: F(y,w)=∑b,B,(y,w),(y,w)e2 ■Here, by+kH=F(任,4)Regular patch Limit triangle is , and its linear parameterization is : barycentric system of coordinates for the unit triangle, By the linear precision property of the Bernstein polynomials, can be expressed into the quartic Bézier form: Here, 1 11 15 F bb b = {, , } u vw = 1− − 1 11 15 F bb b (, ) vw u v w vw = + + ∈Ω ,( , ) (,, ) uvw 15 1 ( , ) ( , ), ( , ) i i i vw B vw vw = F b = ∑ ∈Ω F(, ) v w ( )( 1) 2 1 4 4 (,) jk jk j k k + ++ b F + + =