正在加载图片...
1418 A.G. Evans et al. Joumal of the European Ceramic Sociery 28(2008)1405-1419 24. Schaedler, T. A, Leckie, R. M, Kraemer, S, Evans, A. G and Levi, C G, 52. Doychak, J, Smialek, J. L and Mitchell, T E, Transient oxidation of single- Toughening of Non-Transformable t -YSZ by addition of Titania. J Am crystal beta-NiAl. Met. Trans. A, 1989, 20(3). 499-518. Ceram.Soc,2007,9012),3896-3901 53. Rybicki, G. C and Smialek, J. L, Effect of the theta-alpha-Al2Os trans- 25. Pitek, F. M. and Levi, C. G. Opportunities for TBCs in the formation on the oxidation behavior of beta-NiAl+Zr. Oxid. Met., 1989 ZrO2-YO1 S-TaO25 system Surf. Coat. TechnoL, 2007, 201, 6044- 31(3-4),275-304 26. Clarke, D.R., The lateral growth strain accompanying the formation of a 54. Reddy, A Hovis, D. B, Heuer, A.H., Paulikas, A P and Veal, B w, Insitu thermally grown oxide. Acta Mate, 2003, 51, 1393 tudy of oxidation- induced growth strains in a model NiCrAlY bond-coat 27. Nicholls, J.R., Advances in coating design for high-performance gas tur- ally.oxid.Met,2007,67(34,153-177 bines. MRS Bull,2003,28(9),659-670 55. Heuer, A H, Reddy, A, Hovis, D. B, Veal, B. w, Paulikas, A Vlad, A and 28. Warnes, B. M. and Punola, D. C, Clean diffusion coatings by chemical Ruhle, M, The effect of surface orientation on oxidation-induced growth apor deposition. Surf. Coat. TechnoL, 1997, 94-95,1-6 strains in single crystal NiAl: an in situ synchrotron study. Scripta Mater 29. Goward, G. w, Progress in coatings for gas turbine airfoils. Surf. Coat. 2006,54,1907-1912. Technot.,1998,108-109,1-3 56. Clarke, D. R. and Adar, F, Measurement of the crystallographically 30. Boone, D. H Strangman, T. E and Wilson, T. E, Some effects of structure transformed zone produced by fracture in ceramics containing tetragonal the properties of electron beam vapor deposited coatings zirconia. J. Am. Ceram Soc., 1982, 65, 284-288 for gas turbine superalloys. J. Vac. Sci. Technol, 1974, 11(4). 641-646. 57. Gong. X.Y. and Clarke, D. R, On the measurement of strain in coatings 31. Xu, T, Faulhaber, S, Mercer, C, Maloney, M. and Evans, A. G,Observa- ormed on a wrinkled elastic substrate Oxid. Met. 1998 50. 355 tions and analyses of failure mechanisms in thermal barrier systems with 58. Lipkin, D. M. and Clarke, D. R, Measurement of the stress in oxide scales two phase bond coats based on NiCoCrAlY. Acta Mater, 2004, 52, 1439 formed by oxidation of alumina-forming alloys. Oxid. Met, 1996, 45(3-4), 32. Rickerby, D. S and wing. R. G.US Patent No 5, 942, 337, August 1999 267-280. 33. Gleeson, B, Sordelet, D. J and Wang, w, US Patent 7, 273, 662, September 59. Zhang, w, Smith, J.R., Wang, X. G and Evans, A. G, Influence of sulfur 25,2007. on the adhesion of the nickelalumina interface. Phys. Rev. B. 2003. 67. 34. Tolpygo, V.K. and Clarke, D.R., Surface rumpling of a(Ni, PI)Al bond coat induced by cyclic oxidation. Acta Mater, 2000, 48, 3283-3293 60. Zhang, w.Smith, J.R. and Evans, A G, The connection between ab initio 35. Tolpygo, V. K, Rumpling induced by thermal cycling of an overlay coating: calculations and interface adhesion measurements on metal/oxide systems: the effect of coating thickness. Acta Mater. 2004. 52, 615-621 Ni/ O3 and Cu/AlO3. Acta Mater, 2002, 50, 3803-3816 36. Balint, D. S and Hutchinson, J. w, An analytical model of rumpling in 61. Smialek, J. L, Effect of sulfur removal on Al2O3 scale adhesion. Metall. thermal barier coatings. J. Mech. Phys. Solids, 2005, 53, 949-973 Trans.A,1991,2,739-752 37. Davis, A. W and Evans, A G, A protocol for validating models of the cyclic 62. Ruud, J.A., Bartz, A, Borom, M. P and Johnson, C.A., Strength degradation undulation of thermally grown oxides. Acta Mater, 2005, 53, 1895-1905 and failure mechanisms of electron-beam physical-vapor-deposited thermal 38. Karlsson, A M. Hutchinson, J. W and Evans, A G, A fundamental model barrier coatings. J. Am. Ceram. Soc.. 2001. 84. 1545-1552 of cyclic instabilities in thermal barrier systems. J. Mech. Phys. Solids, 2002, 63. Davis, A. W. and Evans, A. G Effects of bond coat misfit strains on the ,1565-1589 Impling of thermally grown oxides. Metall. Mater Trans., 2006, 37A, 39. Chen, M. w, Glynn, M. L. Ott, R. T, Hufnagel, T C. and Hemker, KJ. 85-2095 Characterization and modeling of a martensitic transformation in a platinum 64. Mumm. D. R, Evans, A G. and Spitsberg, I. T, Characterization of a cyclic modified diffusion aluminide bond coat for thermal barrier coatings. acta displacement instability for a thermally grown oxide in a thermal barrier Mate,2003,51,42794294 ystem. Acta Mater, 2001, 49, 2329-2340. 40. Johnson, C. A. Ruud, J. A, Bruce, R and Wortman, D, Relationships 65. Tolpygo, V K and Clarke, D. R, unpublished work. between residual stress. microst and mechanical properties of elec- 66. Chen, X, Wang, R, Yao, N, Evans, A G, Hutchinson, J. w and Bruce, on beam physical vapor deposition thermal barrier coatings. Surf Coat. R. w, Foreign object damage in a thermal barrier system: mechanisms and Techno.,1998,108-109,80-85 simulations. Mater: Sci Eng. A, 2003, 352, 221-231 G, Li, L, Nychka, J. A and Clarke, D R, Vibration damping of 67. Nicholls, J.R., Deakin, M. J. and Rickerby, D. S,A comparison and thermal barrier coatings at high-temperatures. Mater. Sci. between the erosion behavior of thermal spray and electron-beam physi- 2007,466.256-264 cal vapour deposition thermal barrier coatings. Wear, 1999, 233-235, 352- 42. Strangman, T E. Thermal barrier coatings for turbine airfoils. Thin Solid 1985,127,93-105 68. Wellman. R. G. and Nicholls. J. R. Some observations on erosion mecha. 43. TA., US Patent5,073,433,1991 isms of EB-PVd TBCs. Wear. 2000. 242 89-9 R. W and Schaeffer, J C. European Patent EP1281788, 2003. 69. Bruce, R. w, Development of 1232C (2250F)erosion and impact tests 45. Tolpygo, V.K. and Clarke, D R, On the rumpling mechanism in nickel- for thermal barrier coatings. Tribol. Trans., 1998, 41, 399-410. aluminide coatings Part ll. Characterization of surface undulations and bond 70. Borom, M. P, Johnson, C. A. and Peluso, L. A. Role of environ- oat swelling. Acta Mater, 2004. 52, 5129-5141 mental deposits and operating surface temperature in spallation of air 46 Mennicke, C, Mumm, D R and Clarke, D R, Transient phase evolution plasma sprayed thermal barrier coatings. Surf. Coat. TechnoL, 1996, 86- during oxidation of a two-phase NiCoCrAlY bond coat. Z. Metall., 1999 87,116-126 90(12),1079-1084 71. Mercer, C. Faulhaber. S. Evans, A. G. and Darolia, R, A delamination 47. Levi, C G, Sommer, E, Terry, S G, Catanoiu, A and Ruhle, M, Alumina mechanism for thermal barrier coatings subject to calcium-magnesium- grown during deposition of thermal barrier coatings on NiCrAlY.J.Am. alumino-silicate(CMAS)infiltration. Acta Mater. 2005. 53, 1029-1039 Ceran.Soc,2002,86,676-685 72. Kramer. S. Faulhaber. S, Chambers. M., Levi, C. G. Hutchinson, J. w.and 48. Murphy, K.s.More, K.L. and Lance, M. J, As-deposited mixed zone Evans, A G, Mechanisms of cracking and delamination within thermal bar- in thermally grown oxide beneath a thermal barrier coating. Surf. Coat. rier systems in aeroengines subject to calcium-magnesium-alumino-silicate Technol,2001,146-147,152-161 (CMAS) penetration. Mater. Sci. Eng. A, in press. 49. Tolpygo, V.K. and Clarke, D R, Microstructural study of the theta-alpha 73 Nychka, J. A Quantification of aluminum outward diffusion during oxida- transformation in alumina scales formed on nickel-aluminides. Mater. High tion of Fe CrAl alloys Oxid. Met., 2005, 63, 325-352. Temp.,2000,17(1),59-70. 74. Tolpygo, V.K., Microstructural evidence for counter-diffusion of aluminum 50. Pint, B. A. Martin. J. R. and Hobbs, L. W. The oxidation mechanism of and oxygen during the growth of alumina scales. Mater. High Temp., 2003 theta-AlzO3 scales Solid State ionics, 1995, 78. 99-107 261-271. 51. Brumm, w. M and Grabke, H J, The oxidation behavior of NiAl. Part 1. 75. Yoshimura, M, Yashima, M, Noma, T and Somiya, S. Formation of dif- Phase-transformations in the alumina scale during oxidation of NiAl and fusionlessly transformed tetragonal phases by rapid quenching of melts in NiAl-Cr Alloys. Corros. Sci., 1992, 33(11). 1677-1690. ZrO2-RO1-s systems(R=rare earths). J Mater Sci., 1990, 25, 2011-2016.1418 A.G. Evans et al. / Journal of the European Ceramic Society 28 (2008) 1405–1419 24. Schaedler, T. A., Leckie, R. M., Kraemer, S., Evans, A. G. and Levi, C. G., Toughening of Non-Transformable t’-YSZ by addition of Titania. J. Am. Ceram. Soc., 2007, 90(12), 3896–3901. 25. Pitek, F. M. and Levi, C. G., Opportunities for TBCs in the ZrO2–YO1 5–TaO2.5 system. Surf. Coat. Technol., 2007, 201, 6044–6050. 26. Clarke, D. R., The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater., 2003, 51, 1393. 27. Nicholls, J. R., Advances in coating design for high-performance gas tur￾bines. MRS Bull., 2003, 28(9), 659–670. 28. Warnes, B. M. and Punola, D. C., Clean diffusion coatings by chemical vapor deposition. Surf. Coat. Technol., 1997, 94-95, 1–6. 29. Goward, G. W., Progress in coatings for gas turbine airfoils. Surf. Coat. Technol., 1998, 108–109, 1–3. 30. Boone, D. H., Strangman, T. E. and Wilson, T. E., Some effects of structure and composition on the properties of electron beam vapor deposited coatings for gas turbine superalloys. J. Vac. Sci. Technol., 1974, 11(4), 641–646. 31. Xu, T., Faulhaber, S., Mercer, C., Maloney, M. and Evans, A. G., Observa￾tions and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY. Acta Mater., 2004, 52, 1439. 32. Rickerby, D. S. and Wing, R. G., US Patent No. 5,942,337, August 1999. 33. Gleeson, B., Sordelet, D. J. and Wang, W., US Patent 7,273,662, September 25, 2007. 34. Tolpygo, V. K. and Clarke, D. R., Surface rumpling of a (Ni,Pt)Al bond coat induced by cyclic oxidation. Acta Mater., 2000, 48, 3283–3293. 35. Tolpygo, V. K., Rumpling induced by thermal cycling of an overlay coating: the effect of coating thickness. Acta Mater., 2004, 52, 615–621. 36. Balint, D. S. and Hutchinson, J. W., An analytical model of rumpling in thermal barrier coatings. J. Mech. Phys. Solids, 2005, 53, 949–973. 37. Davis, A. W. and Evans, A. G., A protocol for validating models of the cyclic undulation of thermally grown oxides. Acta Mater., 2005, 53, 1895–1905. 38. Karlsson, A. M., Hutchinson, J. W. and Evans, A. G., A fundamental model of cyclic instabilities in thermal barrier systems. J. Mech. Phys. Solids, 2002, 50, 1565–1589. 39. Chen, M. W., Glynn, M. L., Ott, R. T., Hufnagel, T. C. and Hemker, K. J., Characterization and modeling of a martensitic transformation in a platinum modified diffusion aluminide bond coat for thermal barrier coatings. Acta Mater., 2003, 51, 4279–4294. 40. Johnson, C. A., Ruud, J. A., Bruce, R. and Wortman, D., Relationships between residual stress, microstructure and mechanical properties of elec￾tron beam physical vapor deposition thermal barrier coatings. Surf. Coat. Technol., 1998, 108–109, 80–85. 41. Gregori, G., Li, L., Nychka, J. A. and Clarke, D. R., Vibration damping of superalloys and thermal barrier coatings at high-temperatures. Mater. Sci. Eng. A, 2007, 466, 256–264. 42. Strangman, T. E., Thermal barrier coatings for turbine airfoils. Thin Solid Films, 1985, 127, 93–105. 43. Taylor, T. A., US Patent 5,073,433, 1991. 44. Bruce, R. W. and Schaeffer, J. C., European Patent EP1281788, 2003. 45. Tolpygo, V. K. and Clarke, D. R., On the rumpling mechanism in nickel￾aluminide coatings. Part II. Characterization of surface undulations and bond coat swelling. Acta Mater., 2004, 52, 5129–5141. 46. Mennicke, C., Mumm, D. R. and Clarke, D. R., Transient phase evolution during oxidation of a two-phase NiCoCrAlY bond coat. Z. Metall., 1999, 90(12), 1079–1084. 47. Levi, C. G., Sommer, E., Terry, S. G., Catanoiu, A. and Ruhle, M., Alumina ¨ grown during deposition of thermal barrier coatings on NiCrAlY. J. Am. Ceram. Soc., 2002, 86, 676–685. 48. Murphy, K. S., More, K. L. and Lance, M. J., As-deposited mixed zone in thermally grown oxide beneath a thermal barrier coating. Surf. Coat. Technol., 2001, 146–147, 152–161. 49. Tolpygo, V. K. and Clarke, D. R., Microstructural study of the theta–alpha transformation in alumina scales formed on nickel-aluminides. Mater. High Temp., 2000, 17(1), 59–70. 50. Pint, B. A., Martin, J. R. and Hobbs, L. W., The oxidation mechanism of theta-Al2O3 scales. Solid State Ionics, 1995, 78, 99–107. 51. Brumm, W. M. and Grabke, H. J., The oxidation behavior of NiAl. Part 1. Phase-transformations in the alumina scale during oxidation of NiAl and NiAl–Cr Alloys. Corros. Sci., 1992, 33(11), 1677–1690. 52. Doychak, J., Smialek, J. L. and Mitchell, T. E., Transient oxidation of single￾crystal beta-NiAl. Met. Trans. A, 1989, 20(3), 499–518. 53. Rybicki, G. C. and Smialek, J. L., Effect of the theta–alpha-Al2O3 trans￾formation on the oxidation behavior of beta-NiAl + Zr. Oxid. Met., 1989, 31(3–4), 275–304. 54. Reddy, A., Hovis, D. B., Heuer, A. H., Paulikas, A. P. and Veal, B. W., In situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy. Oxid. Met., 2007, 67(3–4), 153–177. 55. Heuer, A. H., Reddy, A., Hovis, D. B., Veal, B. W., Paulikas, A., Vlad, A. and Ruhle, M., The effect of surface orientation on oxidation-induced growth ¨ strains in single crystal NiAl: an in situ synchrotron study. Scripta Mater., 2006, 54, 1907–1912. 56. Clarke, D. R. and Adar, F., Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J. Am. Ceram. Soc., 1982, 65, 284–288. 57. Gong, X. Y. and Clarke, D. R., On the measurement of strain in coatings formed on a wrinkled elastic substrate. Oxid. Met., 1998, 50, 355. 58. Lipkin, D. M. and Clarke, D. R., Measurement of the stress in oxide scales formed by oxidation of alumina-forming alloys. Oxid. Met., 1996, 45(3–4), 267–280. 59. Zhang, W., Smith, J. R., Wang, X. G. and Evans, A. G., Influence of sulfur on the adhesion of the nickel/alumina interface. Phys. Rev. B, 2003, 67, 245414. 60. Zhang, W., Smith, J. R. and Evans, A. G., The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater., 2002, 50, 3803–3816. 61. Smialek, J. L., Effect of sulfur removal on Al2O3 scale adhesion. Metall. Trans. A, 1991, 22, 739–752. 62. Ruud, J. A., Bartz, A., Borom, M. P. and Johnson, C. A., Strength degradation and failure mechanisms of electron-beam physical-vapor-deposited thermal barrier coatings. J. Am. Ceram. Soc., 2001, 84, 1545–1552. 63. Davis, A. W. and Evans, A. G., Effects of bond coat misfit strains on the rumpling of thermally grown oxides. Metall. Mater. Trans., 2006, 37A, 2085–2095. 64. Mumm, D. R., Evans, A. G. and Spitsberg, I. T., Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Mater., 2001, 49, 2329–2340. 65. Tolpygo, V. K. and Clarke, D. R., unpublished work. 66. Chen, X., Wang, R., Yao, N., Evans, A. G., Hutchinson, J. W. and Bruce, R. W., Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater. Sci. Eng. A, 2003, 352, 221–231. 67. Nicholls, J. R., Deakin, M. J. and Rickerby, D. S., A comparison between the erosion behavior of thermal spray and electron-beam physi￾cal vapour deposition thermal barrier coatings. Wear, 1999, 233–235, 352– 361. 68. Wellman, R. G. and Nicholls, J. R., Some observations on erosion mecha￾nisms of EB-PVD TBCs. Wear, 2000, 242, 89–96. 69. Bruce, R. W., Development of 1232 ◦C (2250 ◦F) erosion and impact tests for thermal barrier coatings. Tribol. Trans., 1998, 41, 399–410. 70. Borom, M. P., Johnson, C. A. and Peluso, L. A., Role of environ￾mental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coat. Technol., 1996, 86– 87, 116–126. 71. Mercer, C., Faulhaber, S., Evans, A. G. and Darolia, R., A delamination mechanism for thermal barrier coatings subject to calcium-magnesium￾alumino-silicate (CMAS) infiltration. Acta Mater., 2005, 53, 1029–1039. 72. Kramer, S. Faulhaber, S., Chambers, M., Levi, C. G., Hutchinson, J. W. and ¨ Evans, A. G., Mechanisms of cracking and delamination within thermal bar￾rier systems in aeroengines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng. A, in press. 73. Nychka, J. A., Quantification of aluminum outward diffusion during oxida￾tion of FeCrAl alloys. Oxid. Met., 2005, 63, 325–352. 74. Tolpygo, V. K., Microstructural evidence for counter-diffusion of aluminum and oxygen during the growth of alumina scales. Mater. High Temp., 2003, 20, 261–271. 75. Yoshimura, M., Yashima, M., Noma, T. and Somiya, S., Formation of dif￾fusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-RO1.5 systems (R = rare earths). J. Mater. Sci., 1990, 25, 2011–2016
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有