正在加载图片...
判别法,∑xn收敛,所以imxn=团 (2)设x=(2m,则lmxm=1im2n+12m+2=0,由 D'Alembert 2m(n+) 1→0 1→ 22(n+) 判别法,∑x,收敛,所以mxn=lm2m)=0 3.利用 Raabe判别法判断下列级数的敛散性: (a>0) (2) 解(1)设 则 (a+1)(a+2)…( lim 由Rabe判别法 当a>1时,级数收敛,当0<a<1时,级数发散; 级数发散 )设 lim ln3>1 由Rabe判别法,级数收敛。 (3)设 则 li ln2<1 由Rabe判别法,级数发散 4.讨论下列级数的敛散性 x判别法, ∑ 收敛,所以 ∞ n=1 n x lim n→∞ xn = lim n→∞ 2 (n!) nn = 0。 (2)设 ( 1) 2 (2 )! + = n n n n x ,则 n n n x x 1 lim + →∞ 0 2 (2 1)(2 2) lim 2( 1) = + + = + →∞ n n n n ,由 D’Alembert 判别法, ∑ 收敛,所以 ∞ n=1 n x lim n→∞ xn = lim n→∞ ( 1) 2 (2 )! n n+ n = 0。 3. 利用 Raabe 判别法判断下列级数的敛散性: (1) ∑ ∞ =1 ( +1)( + 2) ( + ) ! n a a a n n " (a>0); (2) ∑ ∞ =1 ln 3 1 n n ; (3) n n 1 2 1 1 1 2 1 + + + ∞ = ∑ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ " 。 解 (1) 设 ( 1)( 2) ( ) ! a a a n n xn + + + = " ,则 a x x n n n n =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + →∞ lim 1 1 , 由 Raabe 判别法, 当a > 1时, 级数收敛,当0 < a < 1时, 级数发散; 当a = 1, 1 1 + = n xn ,级数发散。 (2) 设 n n x ln 3 1 = ,则 lim 1 ln3 1 1 = > ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + →∞ n n n x x n , 由 Raabe 判别法,级数收敛。 (3) 设 n n x 1 2 1 1 2 1 + + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = " ,则 lim 1 ln 2 1 1 = < ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + →∞ n n n x x n , 由 Raabe 判别法,级数发散。 4. 讨论下列级数的敛散性: (1) ∑∫ ∞ =1 − 1 0 d n 1 n x x x ; (2) ∑∫ ∞ = π π 1 2 2 2 d sin n n n x x x ; 4
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有