正在加载图片...
(13) n→0) 由于∑发散,所以∑(√m2+1-√m2-1发散。 1)2n=+-3m=12-+a 2n+√n2+1+√n2-1 2n+Vm2+1+Vm2-1m2+V(n2+1)n2-1)4n n→∞), 由于∑收敛,所以∑2n-=Vm2+1-m-收敛 (15)n 2 由于∑2收敛,所以∑n”收敛。 (16)-IncosI=-In1-1-cos--In1-2sin2T 由于∑收敛,所以∑(- - In cos)收敛 (17)设xn= 则 (1+a)(+a2)…(1+a" <a< a=1 0a>1 由 D'Alembert判别法, (a>0)收敛。 (1+a)(1+a2)…(1+a") 2.利用级数收敛的必要条件,证明: (1)1in=0 (2)lim(2n) n→2)时0。 证(1)设x,=m”,则m5=m(-1(1+1)|=0,由 D'Alembert →xnmn+1(n(13) 1 1 2 2 n + − n − 1 1 2 2 2 + + − = n n ~ n 1 (n → ∞), 由于 ∑ ∞ =1 1 n n 发散,所以∑ ∞ = + − − 1 2 2 ( 1 1) n n n 发散。 (14)2 − +1 − −1 = 2 2 n n n ( ) 2 1 1 2 ( 1)( 1) 2 2 2 2 2 + + + − − + − n n n n n n ( 1)( 1) 1 2 1 1 2 2 2 2 2 2 + + − ⋅ + + + − = n n n n n n ~ 3 4 1 n (n → ∞), 由于 ∑ ∞ =1 3 4 1 n n 收敛,所以∑ ∞ = − + − − 1 2 2 (2 1 1) n n n n 收敛。 (15) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = + − + 1 2 ln 1 1 1 ln 2 2 2 n n n ~ 2 2 n (n → ∞), 由于 ∑ ∞ =1 2 2 n n 收敛,所以∑ ∞ = − + 2 2 2 1 1 ln n n n 收敛。 (16) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = − − − n n π π ln cos ln 1 1 cos ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = − − 2n ln 1 2sin 2 π ~ 2 2 2n π (n → ∞), 由于 ∑ ∞ =1 2 2 n 2n π 收敛,所以 ( ln cos ) 3 ∑ ∞ = − n n π 收敛。 (17)设 (1 )(1 ) (1 ) 2 n n n a a a a x + + + = " ,则 n n n x x 1 lim + →∞ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ > = < < = 0 1 1 2 1 0 1 a a a a , 由 D’Alembert 判别法,∑ ∞ =1 + + + 2 n (1 )(1 ) (1 ) n n a a a a " (a>0)收敛。 2. 利用级数收敛的必要条件,证明: (1) lim n→∞ 2 (n!) nn = 0; (2) lim n→∞ ( 1) 2 (2 )! n n+ n = 0。 证 (1)设 2 (n!) n x n n = ,则 n n n x x 1 lim + →∞ 0 1 1 1 1 lim = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + = →∞ n n n n ,由 D’Alembert 3
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有