正在加载图片...
因此,叶绿素b具有较高的热稳定性 p影响蔬菜组织中叶绿素的热降解,在碱性介质中(pH9.0),叶绿素对热非常稳定, 然而在酸性介质中(pH3.0)易降解。植物组织受热后,细胞膜被破坏,増加了氢离子的 通透性和扩散速率,于是由于组织中有机酸的释放导致pH降低一个单位,从而加速了叶 绿素的降解。盐的加入可以部分抑制叶绿素的降解,有试验表明,在烟叶中添加盐(如 NaCl、MgCl2和CaCl2)后加热至90℃,脱镁叶绿素的生成分别降低47%、70%和77%,这是 叶绿素在受热时的转化过程是按下述动力学顺序进,约 由于盐的静电屏蔽效果所致。表7-2列出了某些市售蔬菜罐头中叶绿素的降解产物含量。 叶绿素→脱镁叶绿素→焦脱镁叶绿素 表7-2市售蔬菜罐头中叶绿素降解产物的比例 脱镁叶绿素(μg/g干重) 焦脱镁叶绿素(μg/g干重) 产品 b 菠菜 00 绿豆 340 芦笋 绿碗豆 13 不含镁的叶绿素衍生物的四吡咯核的2个氢原子容易被锌或铜离子置换形成绿色的 金属配合物。脱镁叶绿素a和b由于金属离子的配位,使之在红区的最大吸收波长向短 波方向移动,而蓝区则向长波方向移动。不含植醇基的金属配合物与其母体化合物的光 谱特征相同。 锌和铜的配合物在酸性溶液中比在碱性溶液中稳定。前面已经指出,当在室温时添 加酸,叶绿素中的镁易被脱除,而锌的配合物在p2的溶液中则是稳定的。铜被脱除只 有在皿低至卟啉环开始降解才会发生。已知植物组织中,叶绿素a的金属配合物的形成 速率高于b的金属配合物。叶绿素的植醇基由于空间位阻降低了金属配合物的形成速率, 在乙醇中脱镁叶绿酸盐a比脱镁叶绿素a和叶绿素铜钠a的反应速率快四倍。 Schander 比较了蔬菜泥中铜和锌金属螯合物的形成速率,结果表明,铜比锌更易发生螯合,当铜 和锌同时存在时,主要形成叶绿素铜配合物。p值也影响配合物的形成速率,将蔬菜泥 在121℃加热60min,p从4.0增加到8.5时,焦脱镁叶绿素锌a的生成量增加11倍。 然而在pH10时,由于锌产生沉淀而使配合物的生成量减少(图7-4)。- 6 - 因此,叶绿素 b 具有较高的热稳定性。 pH影响蔬菜组织中叶绿素的热降解,在碱性介质中(pH9.0),叶绿素对热非常稳定, 然而在酸性介质中(pH3.0)易降解。植物组织受热后,细胞膜被破坏,增加了氢离子的 通透性和扩散速率,于是由于组织中有机酸的释放导致pH降低一个单位,从而加速了叶 绿素的降解。盐的加入可以部分抑制叶绿素的降解,有试验表明,在烟叶中添加盐(如 NaCl、 MgCl2和CaCl2)后加热至 90℃,脱镁叶绿素的生成分别降低 47%、70%和 77%,这是 由于盐的静电屏蔽效果所致。表 7-2 列出了某些市售蔬菜罐头中叶绿素的降解产物含量。 叶绿素在受热时的转化过程是按下述动力学顺序进行: 叶绿素→脱镁叶绿素→焦脱镁叶绿素 表 7-2 市售蔬菜罐头中叶绿素降解产物的比例 脱镁叶绿素(μg/g 干重) 焦脱镁叶绿素(μg/g 干重) 产品 a b a b 菠菜 830 200 4000 1400 绿豆 340 120 260 95 芦笋 180 51 110 30 绿碗豆 34 13 33 12 不含镁的叶绿素衍生物的四吡咯核的 2 个氢原子容易被锌或铜离子置换形成绿色的 金属配合物。脱镁叶绿素a和b 由于金属离子的配位,使之在红区的最大吸收波长向短 波方向移动,而蓝区则向长波方向移动。不含植醇基的金属配合物与其母体化合物的光 谱特征相同。 锌和铜的配合物在酸性溶液中比在碱性溶液中稳定。前面已经指出,当在室温时添 加酸,叶绿素中的镁易被脱除,而锌的配合物在 pH2 的溶液中则是稳定的。铜被脱除只 有在 pH 低至卟啉环开始降解才会发生。已知植物组织中,叶绿素 a 的金属配合物的形成 速率高于 b 的金属配合物。叶绿素的植醇基由于空间位阻降低了金属配合物的形成速率, 在乙醇中脱镁叶绿酸盐 a 比脱镁叶绿素 a 和叶绿素铜钠 a 的反应速率快四倍。Schanderl 比较了蔬菜泥中铜和锌金属螯合物的形成速率,结果表明,铜比锌更易发生螯合,当铜 和锌同时存在时,主要形成叶绿素铜配合物。pH 值也影响配合物的形成速率,将蔬菜泥 在 121℃加热 60 min,pH 从 4.0 增加到 8.5 时,焦脱镁叶绿素锌 a 的生成量增加 11 倍。 然而在 pH10 时,由于锌产生沉淀而使配合物的生成量减少(图 7-4)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有