正在加载图片...
叶绿素酶是目前已知的唯一能使叶绿素降解的酶。叶绿素酶是一种酯酶,能催化叶 绿素和脱镁叶绿素脱植醇,分别生成脱植基叶绿素和脱镁脱植基叶绿素。对于叶绿素的 其他衍生物,因其结构不同,叶绿素酶的活性显示明显的差别。叶绿素酶在水、醇和丙 酮溶液中具有活性,在蔬菜中的最适反应温度为60~82.2℃,因此植物体采收后未经热 加工,脱植基叶绿素不可能在新鲜叶片上形成。如果加热温度超过80℃,酶活力降低, 达到100℃时则完全丧失活性。图7-3是菠菜生长期和在5℃贮藏时的叶绿素酶活力变化。 ---生长期 贮藏期 天数(成熟后)d 图7-3菠菜在生长期和5℃贮藏时,叶绿素酶活力的变化 (叶绿素酶活力以叶绿素转化为脱植基叶绿素的分数表示) (2)化学变化 叶绿素具有官能侧基,所以能够发生许多其他反应,碳环( isocyclic ring)氧化 形成加氧叶绿素(a1 lomerized chlorophyl1),四吡咯环破裂形成无色的终产物。在食 品加工中,这类反应很可能进行到某种程度,但是与叶绿素的脱镁反应比较不是主要的 在适当条件下,分子中的镁原子可被铜、铁和锌等取代。 叶绿素在加热或热加工过程中可形成两类衍生物,即四吡咯环中心有无镁原子存在 含镁的叶绿素衍生物显绿色,脱镁叶绿素衍生物为橄榄褐色。后者还是一种螯合剂,在 有足够的锌或铜离子存在时,四吡咯环中心可与锌或铜离子生成绿色配合物,其中叶绿 素铜钠的色泽最鲜亮,对光和热较稳定,是一种理想的食品着色剂。 叶绿素分子受热首先是发生异构化,形成叶绿素a′和叶绿素b′,当叶片在100℃C 加热10min,大约5%~10%的叶绿素a和叶绿b异构化为叶绿素a′和叶绿素b′。叶绿 素中镁原子易被氢取代,形成脱镁叶绿素,极性小于母体化合物,反应在水溶液中是可 逆的。叶绿素a的转化速率比叶绿素b快,在加热时叶绿素b显示较强的热稳定性,因 为叶绿素bC-3位甲酰基的吸电子效应和叶绿素的大共轭结构,使电荷是从分子的中心 向外转移,结果四吡咯氮上的正电荷增加,从而降低了反应中间产物形成的平衡常数。 此外,叶绿素b降解反应的活化能较高,为52.7~147.4kJ/mol(随介质pH和温度而异),- 5 - 叶绿素酶是目前已知的唯一能使叶绿素降解的酶。叶绿素酶是一种酯酶,能催化叶 绿素和脱镁叶绿素脱植醇,分别生成脱植基叶绿素和脱镁脱植基叶绿素。对于叶绿素的 其他衍生物,因其结构不同,叶绿素酶的活性显示明显的差别。叶绿素酶在水、醇和丙 酮溶液中具有活性,在蔬菜中的最适反应温度为 60~82.2℃,因此植物体采收后未经热 加工,脱植基叶绿素不可能在新鲜叶片上形成。如果加热温度超过 80℃,酶活力降低, 达到 100℃时则完全丧失活性。图 7-3 是菠菜生长期和在 5℃贮藏时的叶绿素酶活力变化。 图 7-3 菠菜在生长期和 5℃贮藏时,叶绿素酶活力的变化 (叶绿素酶活力以叶绿素转化为脱植基叶绿素的分数表示) (2)化学变化 叶绿素具有官能侧基,所以能够发生许多其他反应,碳环(isocyclic ring)氧化 形成加氧叶绿素(allomerized chlorophyll),四吡咯环破裂形成无色的终产物。在食 品加工中,这类反应很可能进行到某种程度,但是与叶绿素的脱镁反应比较不是主要的。 在适当条件下,分子中的镁原子可被铜、铁和锌等取代。 叶绿素在加热或热加工过程中可形成两类衍生物,即四吡咯环中心有无镁原子存在。 含镁的叶绿素衍生物显绿色,脱镁叶绿素衍生物为橄榄褐色。后者还是一种螯合剂,在 有足够的锌或铜离子存在时,四吡咯环中心可与锌或铜离子生成绿色配合物,其中叶绿 素铜钠的色泽最鲜亮,对光和热较稳定,是一种理想的食品着色剂。 叶绿素分子受热首先是发生异构化,形成叶绿素 a′和叶绿素 b′,当叶片在 100℃ 加热 10min,大约 5%~10%的叶绿素 a 和叶绿 b 异构化为叶绿素 a′和叶绿素 b′。叶绿 素中镁原子易被氢取代,形成脱镁叶绿素,极性小于母体化合物,反应在水溶液中是可 逆的。叶绿素 a 的转化速率比叶绿素 b 快,在加热时叶绿素 b 显示较强的热稳定性,因 为叶绿素 b C-3 位甲酰基的吸电子效应和叶绿素的大共轭结构,使电荷是从分子的中心 向外转移,结果四吡咯氮上的正电荷增加,从而降低了反应中间产物形成的平衡常数。 此外,叶绿素 b 降解反应的活化能较高,为 52.7~147.4kJ/mol(随介质 pH 和温度而异)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有