正在加载图片...
X Wu et al./Warer Research 165 (2019)114975 4.Conclusions 2 0-L An A an OTU d ARG subtypes ial hosts we in rive biofilms path dRC,2010 magnitude faster than BLASt ransfer o tal hehs for a mon dels Nat.Rev function of these anthropogenic particles in the freshwater KL Re rure:and ampotngpeedaigper tream MS Declaration of Competing Interest Acknowledgement心 iang.L.Hu> tion Committee )The authors are th 11810-1 Appendix A.Supplementary data nez,K.C be found References of bronchiectasis by Pseud r.S.K..Schloss,PD.,2013.Deve Alien.HK. ettle ikas.B..Boyd.G.D.Me e.R.R e in 9. M Zhang.H.Alv PJJ.2011.0 nic aggrega Bole AM-Lohse.M.Usadel.2014. -2433 50(4. Conclusions Microplastics provide a unique microhabitat that supports the growth of specific bacterial consortia. Microplastic biofilms have a distinctive microbial community structure compared with biofilms formed on natural substrates, as verified by taxon composition, community separation pattern (PCoA analysis), OTUs with signifi- cantly different abundance, and network relationships. Specific ARG subtypes and several pathogenic bacterial hosts were also selectively enriched by microplastic biofilm. Microplastics could be viewed as a novel, functionally important microhabitat in rivers and the dispersal of the microorganisms present within micro￾plastic biofilms, especially pathogenic microorganisms, may enhance the risks to human health. Further studies are therefore required to establish the mechanism of horizontal gene transfer of ARGs via microplastic biofilms. This could pave the way for a more thorough understanding of the environmental behaviour and function of these anthropogenic particles in the freshwater ecosystem. Differences among the microplastic and biofilm and the natural particles have the potential to affect river environments in at least two ways: first, by introducing species into places where rock and leaf particles cannot reach and change the local community struc￾ture; and second, by transporting species (including specific path￾ogens) with tolerance to antibiotics downstream. Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgements This study was supported by National Key Basic Research Development Program (2015CB459000), the National Natural Sci￾ence Foundation of China (No. 31670498) and the Science and Technology Innovation Committee of Shenzhen (No. JCYJ20170818091727570). The authors are thankful to Dr. Zongbao Liu's help in data analysis. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi.org/10.1016/j.watres.2019.114979. References Aditi, Shariff, M., Beri, K., 2017. Exacerbation of bronchiectasis by Pseudomonas monteilii: a case report. BMC Infect. Dis. 17. Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., Handelsman, J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8 (4), 251e259. Amaral-Zettler, L.A., Zettler, E.R., Slikas, B., Boyd, G.D., Melvin, D.W., Morrall, C.E., Proskurowski, G., Mincer, T.J., 2015. The biogeography of the Plastisphere: im￾plications for policy. Front. Ecol. Environ. 13 (10), 541e546. Andersson, D.I., Hughes, D., 2011. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35 (5), 901e911. Barberan, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6 (2), 343e351. Bengtsson-Palme, J., Larsson, D.G.J., 2015. Antibiotic resistance genes in the envi￾ronment: prioritizing risks. Nat. Rev. Microbiol. 13 (6). Bogaerts, P., Bouchahrouf, W., Lissoir, B., Denis, O., Glupczynski, Y., 2011. IMP-13- producing Pseudomonas monteilii recovered in a hospital environment. J. Antimicrob. Chemother. 66 (10), 2434e2435. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illu￾mina sequence data. Bioinformatics 30 (15), 2114e2120. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high￾throughput community sequencing data. Nat. Methods 7 (5), 335e336. Chen, Q.-L., An, X.-L., Li, H., Zhu, Y.-G., Su, J.-Q., Cui, L., 2017. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biol. Biochem. 114, 229e237. Chi, C.Y., Lai, C.H., Fung, C.P., Wang, J.H., 2005. Pseudomonas mendocina spondy￾lodiscitis: a case report and literature review. Scand. J. Infect. Dis. 37 (11e12), 950e953. Chu, Z.-r., Wang, K., Li, X.-k., Zhu, M.-t., Yang, L., Zhang, J., 2015. Microbial charac￾terization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing. Chem. Eng. J. 262, 41e48. De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., Ruttink, T., Dawyndt, P., 2015. Bacterial community profiling of plastic litter in the Belgian part of the North sea. Environ. Sci. Technol. 49 (16), 9629e9638. Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19), 2460e2461. Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in fresh￾water systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63e82. Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10 (8), 538e550. Feng, J., Li, B., Jiang, X., Yang, Y., Wells, G.F., Zhang, T., Li, X., 2018. Antibiotic resis￾tome in a large-scale healthy human gut microbiota deciphered by meta￾genomic and network analyses. Environ. Microbiol. 20 (1), 355e368. Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O.A., Dantas, G., 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337 (6098), 1107e1111. Foulon, V., Le Roux, F., Lambert, C., Huvet, A., Soudant, P., Paul-Pont, I., 2016. Colonization of polystyrene microparticles by Vibrio crassostreae: light and Electron microscopic investigation. Environ. Sci. Technol. 50 (20), 10988e10996. Girvan, M.S., Campbell, C.D., Killham, K., Prosser, J.I., Glover, L.A., 2005. Bacterial diversity promotes community stability and functional resilience after pertur￾bation. Environ. Microbiol. 7 (3), 301e313. Gulis, V., Suberkropp, K., 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw. Biol. 48 (1), 123e134. Hausner, M., Wuertz, S., 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65 (8), 3710e3713. Hirano, S.S., Upper, C.D., 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae - a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64 (3), 624eþ. Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal: prokaryotic gene recognition and translation initiation site identifi- cation. BMC Bioinf. 11. Jiang, L., Hu, X., Xu, T., Zhang, H., Sheng, D., Yin, D., 2013. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci. Total Environ. 458, 267e272. Keswani, A., Oliver, D.M., Gutierrez, T., Quilliam, R.S., 2016. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach en￾vironments. Mar. Environ. Res. 118, 10e19. Kettner, M.T., Rojas-Jimenez, K., Oberbeckmann, S., Labrenz, M., Grossart, H.P., 2017. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19 (11), 4447e4459. Kirstein, I.V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Loder, M., Gerdts, G., 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1e8. Klein, S., Worch, E., Knepper, T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49 (10), 6070e6076. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013. Devel￾opment of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79 (17), 5112e5120. Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M., Zhang, T., 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9 (11), 2490e2502. Lock, M., Wallace, R.R., Costerton, J.W., Ventullo, R.M., Charlton, S.E., 1984. River epilithon: toward a structural functional model. Oikos 42, 10e22. Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., Alvarez, P.J.J., 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ. Sci. Technol. 44 (19), 7220e7225. Luo, Y., Xu, L., Rysz, M., Wang, Y., Zhang, H., Alvarez, P.J.J., 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China. Environ. Sci. Technol. 45 (5), 1827e1833. Lyons, M.M., Ward, J.E., Gaff, H., Hicks, R.E., Drake, J.M., Dobbs, F.C., 2010. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat. Microb. Ecol. 60 (1), 1e13. Ma, L., Xia, Y., Li, B., Yang, Y., Li, L.-G., Tiedje, J.M., Zhang, T., 2016. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ. Sci. Technol. 50 (1), 420e427. Magoc, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to X. Wu et al. / Water Research 165 (2019) 114979 11
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有