基本概念 定义:设A是n阶矩阵,如果数和n维非零向量x满足 Ax=dx 那么这样的数称为矩阵A的特征值,非零向量x称为A 对应于特征值的特征向量 Ax=nx=Ex 非零向量x满足(4-E)x=0(零向量) 齐次线性方程组有非零解 系数行列式|A-E|=0一、基本概念 定义:设 A 是 n 阶矩阵,如果数 l 和 n 维非零向量 x 满足 Ax = l x, 那么这样的数 l 称为矩阵 A 的特征值,非零向量 x 称为 A 对应于特征值 l 的特征向量. Ax = l x = lE x 非零向量 x 满足 (A−lE) x = 0(零向量) 齐次线性方程组有非零解 系数行列式 | A−lE | = 0