正在加载图片...
朱维耀等:多孔介质细观流动理论研究进展 9 观与宏观尺度动力学关系数学描述,解决纳微米 态网络模型.北京科技大学学报,2014,36(2):145) 孔隙流体流动特性问题,推动非线性渗流和细观 [10]Zhu W Y,Tian Y A,Yu M X,et al.Mechanism of microscopic 渗流力学的发展尤为重要. fluid flow in microtubes.Sci Technol Rev,2014,32(27):23 (朱维耀,田英爱,于明旭,等.微圆管中流体的微观流动机制 (3)利用岩心CT扫描等现代化有段获取非常 科技导报,2014,32(27):23) 规储层岩心样本数据,考虑配位数、孔喉比、孔径 [11]Li Z H,Cui HH.Characteristics of micro scale flow.J Mech 分布等孔隙结构参数及模型润湿性等特性,编写 Strength,2001,23(4):476 新的仿真方法,将三维网络模型的规模由以往的 (李战华,崔海航.微尺度流动特性.机械强度,2001,23(4):476) 毫米级扩展到岩心级,建立了考虑控制方程的纳 [12]Qian X R,Shen H J.Developments on hydrokinetic of 微米尺度两相细观流动数学模型,并进行油/水、 microfluidic flow.Aviat Precis Manuf Technol,2005,41(6):11 气/水两相驱替微观模拟,定量分析油气分布规律 (钱晓蓉,沈宏继.微流体动力学研究发展与现状.航空精密制 和尺度效应作用机理,研究细观尺度下压力分布 造技术,2005,41(6):11) [13]Wu P Y,Little WA.Measurement of friction factors for the flow 及驱替规律等,为提高驱替效率的进一步研发提 of gases in very fine channels used for microminiature Joule- 供基础. Thomson refrigerators.Cryogenics,1983,23(5):273 [14]Terry S C.A Gas Chromatography System Fabricated on a Silicon 参考文献 Wafer Using Integrated Circuit Technology [Dissertation].Palo [1]Tao R.Quan X B.Xu J Z.Several questions in research of micro Alto:Stanford University,1975 scale flow.J Eng Thermophys,2001,22(5):575 [15]Harley J C,Huang Y F,Bau HH,et al.Gas flow in micro- (陶然,权晓波,徐建中.微尺度流动研究中的几个问题.工程热 channels.J Fluid Mech,1995,284:257 物理学报,2001,22(5):575) [16]Ho C M,Tai Y C.Micro-electro-mechanical-systems (MEMS)and [2] Chen Y L,Ma Y,Pan F,et al.Research progress in multi-scale fluid flows.Annu Rey Fluid Mech,1998,30(1):579 mechanics of composite materials.Chin J Solid Mech,2018. [17]Barajas A M,Panton R L.The effects of contact angle on two- 39(1):1 phase flow in capillary tubes.Int J Multiph Flow,1993,19(2): (陈玉丽,马勇,潘飞,等.多尺度复合材料力学研究进展.固体 337 力学学报,2018,39(1):1) [18]Triplett K A,Ghiaasiaan S M,Abdel-Khalik S I,et al.Gas-liquid [3]Zhu W Y,Ma QP,Song Z Y,et al.The effect of injection pressure two-phase flow in microchannels Part I:Two-phase flow patterns on the microscopic migration characteristics by CO flooding in Int J Multiph Flow,1999,25(3):377 heavy oil reservoirs.Energy Sources Part A,2019:1 [19]Deng Q J,Zhu W Y,Wang X F,et al.Seepage model considering [4]Zhu W Y,Huang Y Z.The effect of porous media on gas-liquid micro forces in porous media.JUniv Sci Technol Beijing,2014. phase behavior.Pet Explor Dev,1988,15(1):51 36(4):415 (朱维耀,黄延章.多孔介质对气-液相变过程的影响.石油勘探 (邓庆军,朱维耀,王小锋,等.多孔介质中微观力的作用及渗流 与开发,1988,15(1):51) 模型.北京科技大学学报,2014,36(4):415) [5]Ju Y,Gong W B,Chang W,et al.Effects of pore characteristics on [20]Koplik J,Banavar J R,Willemsen J F.Molecular dynamics of water-oil two-phase displacement in non-homogeneous pore fluid flow at solid surfaces.Phys Fluids 4.1989,1(5):781 structures:A pore-scale lattice Boltzmann model considering [21]Zhu W Y,Li BB,Liu Y J,et al.Solid-liquid interfacial effects on various fluid density ratios.Int/Eng Sci,2020,154:103343 residual oil distribution utilizing three-dimensional micro network [6]Allen M B Ill,Behie G A,Trangenstein J A.Multiphase Flow in models.Energies,2017,10(12):2059 Porous Media.New York:Springer US,1988 [22]Cai Q,Buts A,Seaton N A,et al.A pore network model for [7]Wang Q.Chen X.Jha A N.et al.Natural gas from shale diffusion in nanoporous carbons:Validation by molecular formation-The evolution,evidences and challenges of shale gas dynamics simulation.Chem Eng Sci,2008,63(13):3319 revolution in United States.Renewable Sustainable Energy Rev, [23]Wang S,Feng Q,Javadpour F,et al.Multiscale modeling of shale 2014,30:1 apparent permeability:an integrated study of molecular dynamics [8]Zhu W Y,Yue M,Liu Y F,et al.Research progress on tight oil and pore network model /l SPE Annual Technical Conference and exploration in China.Chin J Eng,2019,41(9):1103 Exhibition.San Antonio,2017:SPE-187286-MS (朱维耀,岳明,刘昀枫,等.中国致密油藏开发理论研究进展 [24]Li Y F.Study on Boundary Slip at the Solid-Liquid Interface of the 工程科学学报,2019,41(9):1103) Rough Surfaces Immersed in Liquids with Low Surface Tension [9]Wang X F,Zhu W Y,Deng Q J,et al.Dynamic network model [Dissertation].Harbin:Harbin Institute of Technology,2018 considering solid-liquid molecule interaction in porous media.J (李铁凡.低表面张力液体下的粗糙表面固液界面边界滑移的 Uniy Sci Technol Beijing,2014,36(2):145 研究学位论文].哈尔滨:哈尔滨工业大学,2018) (王小锋,朱维耀,邓庆军,等.考虑固液分子作用的多孔介质动 [25]Hubbert M K.Darcy's law and the field equations of the flow of观与宏观尺度动力学关系数学描述,解决纳微米 孔隙流体流动特性问题,推动非线性渗流和细观 渗流力学的发展尤为重要. (3)利用岩心 CT 扫描等现代化有段获取非常 规储层岩心样本数据,考虑配位数、孔喉比、孔径 分布等孔隙结构参数及模型润湿性等特性,编写 新的仿真方法,将三维网络模型的规模由以往的 毫米级扩展到岩心级,建立了考虑控制方程的纳 微米尺度两相细观流动数学模型,并进行油/水、 气/水两相驱替微观模拟,定量分析油气分布规律 和尺度效应作用机理,研究细观尺度下压力分布 及驱替规律等,为提高驱替效率的进一步研发提 供基础. 参    考    文    献 Tao R, Quan X B, Xu J Z. Several questions in research of micro scale flow. J Eng Thermophys, 2001, 22(5): 575 (陶然, 权晓波, 徐建中. 微尺度流动研究中的几个问题. 工程热 物理学报, 2001, 22(5):575) [1] Chen  Y  L,  Ma  Y,  Pan  F,  et  al.  Research  progress  in  multi-scale mechanics  of  composite  materials. Chin J Solid Mech,  2018, 39(1): 1 (陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展. 固体 力学学报, 2018, 39(1):1) [2] Zhu W Y, Ma Q P, Song Z Y, et al. The effect of injection pressure on  the  microscopic  migration  characteristics  by  CO2 flooding  in heavy oil reservoirs. Energy Sources Part A, 2019: 1 [3] Zhu W Y, Huang Y Z. The effect of porous media on gas-liquid phase behavior. Pet Explor Dev, 1988, 15(1): 51 (朱维耀, 黄延章. 多孔介质对气-液相变过程的影响. 石油勘探 与开发, 1988, 15(1):51) [4] Ju Y, Gong W B, Chang W, et al. Effects of pore characteristics on water-oil  two-phase  displacement  in  non-homogeneous  pore structures:  A  pore-scale  lattice  Boltzmann  model  considering various fluid density ratios. Int J Eng Sci, 2020, 154: 103343 [5] Allen M B III, Behie G A, Trangenstein J A. Multiphase Flow in Porous Media. New York: Springer US, 1988 [6] Wang  Q,  Chen  X,  Jha  A  N,  et  al.  Natural  gas  from  shale formation−The  evolution,  evidences  and  challenges  of  shale  gas revolution  in  United  States. Renewable Sustainable Energy Rev, 2014, 30: 1 [7] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103 (朱维耀, 岳明, 刘昀枫, 等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41(9):1103) [8] Wang X F, Zhu W Y, Deng Q J, et al. Dynamic network model considering  solid-liquid  molecule  interaction  in  porous  media. J Univ Sci Technol Beijing, 2014, 36(2): 145 (王小锋, 朱维耀, 邓庆军, 等. 考虑固液分子作用的多孔介质动 [9] 态网络模型. 北京科技大学学报, 2014, 36(2):145) Zhu W Y, Tian Y A, Yu M X, et al. Mechanism of microscopic fluid flow in microtubes. Sci Technol Rev, 2014, 32(27): 23 (朱维耀, 田英爱, 于明旭, 等. 微圆管中流体的微观流动机制. 科技导报, 2014, 32(27):23) [10] Li  Z  H,  Cui  H  H.  Characteristics  of  micro  scale  flow. J Mech Strength, 2001, 23(4): 476 (李战华, 崔海航. 微尺度流动特性. 机械强度, 2001, 23(4):476) [11] Qian  X  R,  Shen  H  J.  Developments  on  hydrokinetic  of microfluidic flow. Aviat Precis Manuf Technol, 2005, 41(6): 11 (钱晓蓉, 沈宏继. 微流体动力学研究发展与现状. 航空精密制 造技术, 2005, 41(6):11) [12] Wu P Y, Little W A. Measurement of friction factors for the flow of  gases  in  very  fine  channels  used  for  microminiature  Joule￾Thomson refrigerators. Cryogenics, 1983, 23(5): 273 [13] Terry S C. A Gas Chromatography System Fabricated on a Silicon Wafer Using Integrated Circuit Technology [Dissertation].  Palo Alto: Stanford University, 1975 [14] Harley  J  C,  Huang  Y  F,  Bau  H  H,  et  al.  Gas  flow  in  micro￾channels. J Fluid Mech, 1995, 284: 257 [15] Ho C M, Tai Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech, 1998, 30(1): 579 [16] Barajas  A  M,  Panton  R  L.  The  effects  of  contact  angle  on  two￾phase  flow  in  capillary  tubes. Int J Multiph Flow,  1993,  19(2): 337 [17] Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns. Int J Multiph Flow, 1999, 25(3): 377 [18] Deng Q J, Zhu W Y, Wang X F, et al. Seepage model considering micro  forces  in  porous  media. J Univ Sci Technol Beijing,  2014, 36(4): 415 (邓庆军, 朱维耀, 王小锋, 等. 多孔介质中微观力的作用及渗流 模型. 北京科技大学学报, 2014, 36(4):415) [19] Koplik  J,  Banavar  J  R,  Willemsen  J  F.  Molecular  dynamics  of fluid flow at solid surfaces. Phys Fluids A, 1989, 1(5): 781 [20] Zhu W Y, Li B B, Liu Y J, et al. Solid-liquid interfacial effects on residual oil distribution utilizing three-dimensional micro network models. Energies, 2017, 10(12): 2059 [21] Cai  Q,  Buts  A,  Seaton  N  A,  et  al.  A  pore  network  model  for diffusion  in  nanoporous  carbons:  Validation  by  molecular dynamics simulation. Chem Eng Sci, 2008, 63(13): 3319 [22] Wang S, Feng Q, Javadpour F, et al. Multiscale modeling of shale apparent permeability: an integrated study of molecular dynamics and pore network model // SPE Annual Technical Conference and Exhibition. San Antonio, 2017: SPE-187286-MS [23] Li Y F. Study on Boundary Slip at the Solid-Liquid Interface of the Rough Surfaces Immersed in Liquids with Low Surface Tension [Dissertation]. Harbin: Harbin Institute of Technology, 2018 ( 李轶凡. 低表面张力液体下的粗糙表面固液界面边界滑移的 研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018) [24] [25] Hubbert M K. Darcy's law and the field equations of the flow of 朱维耀等: 多孔介质细观流动理论研究进展 · 9 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有