证: 令 f(x)=af(x), h(x)=ch(x),fi(x),h(x)本原,aeZ,ceQ,于是有,afi(x) = g(x)ch(x) = cg(x)h(x)=→c=±a, 即 ce Z.. h(x)= ch(x)为整系数多项式,F81.9有理系数多项式§1.9 有理系数多项式 令 1 1 f x a f x h x ch x ( ) ( ), ( ) ( ), = = 1 1 f x h x ( ), ( ) 本原, 1 1 1 a f x g x ch x cg x h x ( ) ( ) ( ) ( ) ( ) = = 即 c Z . 1 = h x ch x ( ) ( ) 为整系数多项式. 证: a Z c Q , , 于是有, = c a