点击切换搜索课件文库搜索结果(1553)
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:DOC 文档大小:98KB 文档页数:3
第六章带度量的线性空间 6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义 lalv(a,a) 为向量a的长度或模.|a|=1时,称a为单位向量 命题1.1(柯西-布尼雅可夫斯基不等式)对欧氏空间V内任意两个向量a,,有
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式 12 2 为方阵的顺序主子式。 定理设f是实二次型,则下述四条等价:
文档格式:DOC 文档大小:905KB 文档页数:27
定义与基本性质 一、向量的内积定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质:
文档格式:DOC 文档大小:526.5KB 文档页数:18
一、二次型及其矩阵表示 一、二次型及其矩阵表示 设P是一个数域,一个系数在数域P中的x1xn的二次齐次多项式称为数域P上的一个n元二次型,简称二次型定义
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给出这个集合的元素所具有的特征性质
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:DOC 文档大小:1.08MB 文档页数:34
一、线性变换的定义线性空间V到自身的映射称为V的一个变换定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素a,B和数域P中任意数k,都有 (1) 一般用花体拉丁字母A,B,表示V的线性变换,A(a)或a代表元素a在 变换下的像定义中等式
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
首页上页9899100101102103104105下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1553 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有