点击切换搜索课件文库搜索结果(1286)
文档格式:PPT 文档大小:346.5KB 文档页数:13
引理1: 设P为数域A,B∈Pn,若有P,Q∈P\\, 使-=p(e-B)Q① 则A与B相似. 证:由(ae-B)Q=aQ-PBQ =APL-PBO =RE-A 得PQ=E,PBQ=A 即P=Q,A=QBQ∴A与B相似
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:200.5KB 文档页数:4
设V是数域P上一个n维线性空间.V上全体线性函数组成的集合记作 L(V,P).可以用自然的方法在L(V,P)上定义加法和数量乘法 设f,g是V的两个线性函数定义函数f+g如下:
文档格式:DOC 文档大小:160.5KB 文档页数:5
由第五章得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C使CAC成对角形现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强这一节的主要结果是: 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
文档格式:DOC 文档大小:60KB 文档页数:1
设P是数域,是一个文字,作多项式环P[],一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵.在这一章讨论矩阵的一些性质, 并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在矩阵中也包括以数为元素的 矩阵.为了与λ-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩阵.以
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:DOC 文档大小:109KB 文档页数:3
定理 5 如果 V1 ,V2 是线性空间 V 的两个子空间,那么它们的交 V1 V2 也是 V 的子空间
首页上页9899100101102103104105下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1286 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有