点击切换搜索课件文库搜索结果(1106)
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PPT 文档大小:667.5KB 文档页数:42
曲面及其方程 一、曲面方程的概念 曲面的实例:水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义: 如果曲面S与三元方程F(x,y,)=0有下述关系: (1)曲面S上任一点的坐标都满足方程; (2)不在曲面S上的点的坐标都不满足方程; 那么,方程F(x,y,)=0就叫做曲面S的方程, 而曲面S就叫做方程的图形
文档格式:PPT 文档大小:660.5KB 文档页数:26
平面及其方程 平面和直线是最简单和最基本的空间图形。本节和下节我们将以向量作为工具讨论平面和直线 的问题。介绍平面和直线的各种方程及线面关系、 线线关系。 确定一个平面可以有多种不同的方式,但在解析几何中最基本的条件是:平面过一定点且与定向量垂直。这主要是为了便于建立平面方程,同时我们 将会看到许多其它条件都可转化为此。 先介绍平面的点法式方程
文档格式:PPT 文档大小:95.5KB 文档页数:7
欧拉方程 一、欧拉方程 形如 的方程(其中P1,P2…Pn为常数)叫欧拉方程. 特点:各项未知函数导数的阶数与乘积因子自 变量的方次数相同. 解法:欧拉方程是特殊的变系数方程,通过变 量代换可化为常系数微分方程
文档格式:DOC 文档大小:210.5KB 文档页数:3
第七章 定积分的应用 第一节定积分的几何应用 思考题: 1.什么叫微元法?用微元法解决实际问题的思路及步骤如何? 答:微元法就是运用“无限细分”和“无限累积”两个步骤解决实际问题的一种方 法,具体说来,即是对在区间[a,b]上分布不均匀的量F,先将其无限细分,得其微元 dF=f(x)dx然后将微元dF在[a,b上无限求和(累积)即得所求量 F=f=f(x)dx,求微元时,一般是对[a,b的子区间[x,x+dx]对应的部分量, 采用以“常代变”,“均匀代替不均匀”,“直代曲”的思路
文档格式:DOC 文档大小:73KB 文档页数:6
第一单元U检验 一、学习目标 通过本课的学习,掌握小概率事件原理,同时熟练掌握单正态总体均值的检 验(U检验)方法 二、内容讲解 1.小概率事件 假设检验是与点估计、区间估计有区别的另一类问题. 点估计面临的问题是:总体里含有未知参数解决的方法是根据样本求出一个 量去代替未知参数;区间估计面临的问题也是总体里含有未知参数,解决的方法是 确定一个区间以一定的概率去包含未知参数;而假设检验面临的问题更加广泛
文档格式:DOC 文档大小:428KB 文档页数:6
2向量的线性关系 一.概念 为了进一步研究线性方程组的有解性和工程技术实际问题以及理论的需要,我们在本 节研究向量的概念及其线性关系。 在向量代数一章里,我们已经知道,空间向量(向径)OM={x,y,z}(其中M (x,y,z))与有序三数组一一对应。将此推广到一般n元有序数组得到n维向量的概 念
文档格式:PPT 文档大小:395KB 文档页数:18
4牛顿法 Newton- Raphson Method 原理:将非线性方程线性化 Taylor展开/ Taylor's expansion取x0≈x,将∫(x)在x做一阶 Taylor展开:师人,在和x之间 将(x*-x0)2看成高阶小量,则有:下m只要∫∈C,每一步迭代都有f'(xk)≠0,而且Iim=测 x就是∫的根
首页上页100101102103104105106107下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1106 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有